BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30912054)

  • 1. CRISPR Gene Therapy of the Eye: Targeted Knockout of Vegfa in Mouse Retina by Lentiviral Delivery.
    Holmgaard A; Alsing S; Askou AL; Corydon TJ
    Methods Mol Biol; 2019; 1961():307-328. PubMed ID: 30912054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells.
    Holmgaard A; Askou AL; Benckendorff JNE; Thomsen EA; Cai Y; Bek T; Mikkelsen JG; Corydon TJ
    Mol Ther Nucleic Acids; 2017 Dec; 9():89-99. PubMed ID: 29246327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Knockout of the Vegfa Gene in the Retina by Subretinal Injection of RNP Complexes Containing Cas9 Protein and Modified sgRNAs.
    Holmgaard AB; Askou AL; Jensen EG; Alsing S; Bak RO; Mikkelsen JG; Corydon TJ
    Mol Ther; 2021 Jan; 29(1):191-207. PubMed ID: 33022212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration.
    Koo T; Park SW; Jo DH; Kim D; Kim JH; Cho HY; Kim J; Kim JH; Kim JS
    Nat Commun; 2018 May; 9(1):1855. PubMed ID: 29748595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.
    Liang C; Li F; Wang L; Zhang ZK; Wang C; He B; Li J; Chen Z; Shaikh AB; Liu J; Wu X; Peng S; Dang L; Guo B; He X; Au DWT; Lu C; Zhu H; Zhang BT; Lu A; Zhang G
    Biomaterials; 2017 Dec; 147():68-85. PubMed ID: 28938163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curative Ex Vivo Hepatocyte-Directed Gene Editing in a Mouse Model of Hereditary Tyrosinemia Type 1.
    VanLith C; Guthman R; Nicolas CT; Allen K; Du Z; Joo DJ; Nyberg SL; Lillegard JB; Hickey RD
    Hum Gene Ther; 2018 Nov; 29(11):1315-1326. PubMed ID: 29764210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice.
    Ling S; Yang S; Hu X; Yin D; Dai Y; Qian X; Wang D; Pan X; Hong J; Sun X; Yang H; Paludan SR; Cai Y
    Nat Biomed Eng; 2021 Feb; 5(2):144-156. PubMed ID: 33398131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9.
    Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y
    Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR therapy towards an HIV cure.
    Herrera-Carrillo E; Gao Z; Berkhout B
    Brief Funct Genomics; 2020 May; 19(3):201-208. PubMed ID: 31711197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of gene therapy for treatment of age-related macular degeneration.
    Askou AL
    Acta Ophthalmol; 2014 Jul; 92 Thesis3():1-38. PubMed ID: 24953666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo CRISPR/Cas9-Mediated Genome Editing Mitigates Photoreceptor Degeneration in a Mouse Model of X-Linked Retinitis Pigmentosa.
    Hu S; Du J; Chen N; Jia R; Zhang J; Liu X; Yang L
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):31. PubMed ID: 32330228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration.
    Kim K; Park SW; Kim JH; Lee SH; Kim D; Koo T; Kim KE; Kim JH; Kim JS
    Genome Res; 2017 Mar; 27(3):419-426. PubMed ID: 28209587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of Choroidal Neovascularization in Mice by Subretinal Delivery of Multigenic Lentiviral Vectors Encoding Anti-Angiogenic MicroRNAs.
    Askou AL; Benckendorff JNE; Holmgaard A; Storm T; Aagaard L; Bek T; Mikkelsen JG; Corydon TJ
    Hum Gene Ther Methods; 2017 Aug; 28(4):222-233. PubMed ID: 28817343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice.
    Ohmori T; Nagao Y; Mizukami H; Sakata A; Muramatsu SI; Ozawa K; Tominaga SI; Hanazono Y; Nishimura S; Nureki O; Sakata Y
    Sci Rep; 2017 Jun; 7(1):4159. PubMed ID: 28646206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cas9 immunity creates challenges for CRISPR gene editing therapies.
    Crudele JM; Chamberlain JS
    Nat Commun; 2018 Aug; 9(1):3497. PubMed ID: 30158648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered CRISPR Systems for Next Generation Gene Therapies.
    Pineda M; Moghadam F; Ebrahimkhani MR; Kiani S
    ACS Synth Biol; 2017 Sep; 6(9):1614-1626. PubMed ID: 28558198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.