BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 30912056)

  • 1. CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes.
    Thomsen EA; Mikkelsen JG
    Methods Mol Biol; 2019; 1961():343-357. PubMed ID: 30912056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
    Koike-Yusa H; Li Y; Tan EP; Velasco-Herrera Mdel C; Yusa K
    Nat Biotechnol; 2014 Mar; 32(3):267-73. PubMed ID: 24535568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput functional genomics using CRISPR-Cas9.
    Shalem O; Sanjana NE; Zhang F
    Nat Rev Genet; 2015 May; 16(5):299-311. PubMed ID: 25854182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines.
    Adelmann CH; Wang T; Sabatini DM; Lander ES
    Methods Mol Biol; 2019; 1907():125-136. PubMed ID: 30542996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries.
    O'Shea P; Wildenhain J; Leveridge M; Revankar C; Yang JP; Bradley J; Firth M; Pilling J; Piper D; Chesnut J; Isherwood B
    SLAS Discov; 2020 Jul; 25(6):618-633. PubMed ID: 32476557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
    Zhu S; Li W; Liu J; Chen CH; Liao Q; Xu P; Xu H; Xiao T; Cao Z; Peng J; Yuan P; Brown M; Liu XS; Wei W
    Nat Biotechnol; 2016 Dec; 34(12):1279-1286. PubMed ID: 27798563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-Generation Sequencing of Genome-Wide CRISPR Screens.
    Yau EH; Rana TM
    Methods Mol Biol; 2018; 1712():203-216. PubMed ID: 29224076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPR toolbox to study virus-host interactions.
    Puschnik AS; Majzoub K; Ooi YS; Carette JE
    Nat Rev Microbiol; 2017 Jun; 15(6):351-364. PubMed ID: 28420884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR genetic screens to investigate neurological diseases.
    So RWL; Chung SW; Lau HHC; Watts JJ; Gaudette E; Al-Azzawi ZAM; Bishay J; Lin LT; Joung J; Wang X; Schmitt-Ulms G
    Mol Neurodegener; 2019 Nov; 14(1):41. PubMed ID: 31727120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function.
    Shifrut E; Carnevale J; Tobin V; Roth TL; Woo JM; Bui CT; Li PJ; Diolaiti ME; Ashworth A; Marson A
    Cell; 2018 Dec; 175(7):1958-1971.e15. PubMed ID: 30449619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a pig CRISPR/Cas9 knockout library for functional gene screening in pig cells.
    Yu C; Zhong H; Yang X; Li G; Wu Z; Yang H
    Biotechnol J; 2022 Jul; 17(7):e2100408. PubMed ID: 34705337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR Libraries and Screening.
    Poirier JT
    Prog Mol Biol Transl Sci; 2017; 152():69-82. PubMed ID: 29150005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection.
    Kim HS; Lee K; Bae S; Park J; Lee CK; Kim M; Kim E; Kim M; Kim S; Kim C; Kim JS
    J Biol Chem; 2017 Jun; 292(25):10664-10671. PubMed ID: 28446605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical Considerations for Using Pooled Lentiviral CRISPR Libraries.
    McDade JR; Waxmonsky NC; Swanson LE; Fan M
    Curr Protoc Mol Biol; 2016 Jul; 115():31.5.1-31.5.13. PubMed ID: 27366891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.