These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30912125)

  • 21. Selection, epistasis, and parent-of-origin effects on deleterious mutations across environments in Drosophila melanogaster.
    Wang AD; Sharp NP; Spencer CC; Tedman-Aucoin K; Agrawal AF
    Am Nat; 2009 Dec; 174(6):863-74. PubMed ID: 19852616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster].
    Markov AV; Ivnitsky SB; Kornilova MB; Naimark EB; Shirokova NG; Perfilieva KS
    Zh Obshch Biol; 2015; 76(6):429-37. PubMed ID: 26852569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does environmental robustness play a role in fluctuating environments?
    Ketola T; Kellermann VM; Loeschcke V; López-Sepulcre A; Kristensen TN
    Evolution; 2014 Feb; 68(2):587-94. PubMed ID: 24168320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft selection and quantitative genetic variation: a laboratory experiment.
    García-Dorado A; Martin P; García N
    Heredity (Edinb); 1991 Jun; 66 ( Pt 3)():313-23. PubMed ID: 1908838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental Evidence That Phenotypic Evolution but Not Plasticity Occurs along Genetic Lines of Least Resistance in Homogeneous Environments.
    Walter GM
    Am Nat; 2023 Apr; 201(4):E70-E89. PubMed ID: 36957997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenotypic plasticity facilitates initial colonization of a novel environment.
    Wang SP; Althoff DM
    Evolution; 2019 Feb; 73(2):303-316. PubMed ID: 30618131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster.
    Schmidt PS; Conde DR
    Evolution; 2006 Aug; 60(8):1602-11. PubMed ID: 17017061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of gene expression and expression plasticity in long-term experimental populations of Drosophila melanogaster maintained under constant and variable ethanol stress.
    Yampolsky LY; Glazko GV; Fry JD
    Mol Ecol; 2012 Sep; 21(17):4287-99. PubMed ID: 22774776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associations between environmental stress, selection history, and quantitative genetic variation in Drosophila melanogaster.
    Swindell WR; Bouzat JL
    Genetica; 2006 May; 127(1-3):311-20. PubMed ID: 16850235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.
    Shindey R; Varma V; Nikhil KL; Sharma VK
    Chronobiol Int; 2017; 34(5):537-550. PubMed ID: 28156168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in
    Erkosar B; Kolly S; van der Meer JR; Kawecki TJ
    mBio; 2017 Oct; 8(5):. PubMed ID: 29066546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of a single niche specialist in variable environments.
    Jasmin JN; Kassen R
    Proc Biol Sci; 2007 Nov; 274(1626):2761-7. PubMed ID: 17725975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid evolutionary responses of life history traits to different experimentally-induced pollutions in Caenorhabditis elegans.
    Dutilleul M; Bonzom JM; Lecomte C; Goussen B; Daian F; Galas S; Réale D
    BMC Evol Biol; 2014 Dec; 14():252. PubMed ID: 25491302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation to marginal habitats by evolution of increased phenotypic plasticity.
    Chevin LM; Lande R
    J Evol Biol; 2011 Jul; 24(7):1462-76. PubMed ID: 21545421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.
    Kohl KP; Singh ND
    Evolution; 2018 Apr; 72(4):989-999. PubMed ID: 29468654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic malnutrition favours smaller critical size for metamorphosis initiation in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    J Evol Biol; 2012 Feb; 25(2):288-92. PubMed ID: 22122120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian updating during development predicts genotypic differences in plasticity.
    Stamps JA; Biro PA; Mitchell DJ; Saltz JB
    Evolution; 2018 Oct; 72(10):2167-2180. PubMed ID: 30133698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    Heredity (Edinb); 2016 Sep; 117(3):149-54. PubMed ID: 27273321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster.
    Andersen LH; Kristensen TN; Loeschcke V; Toft S; Mayntz D
    J Insect Physiol; 2010 Apr; 56(4):336-40. PubMed ID: 19931279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal variation in life history traits in two Drosophila species.
    Behrman EL; Watson SS; O'Brien KR; Heschel MS; Schmidt PS
    J Evol Biol; 2015 Sep; 28(9):1691-704. PubMed ID: 26174167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.