These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30912431)

  • 1. Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy.
    Zhang YJ; Chen S; Radjenovic P; Bodappa N; Zhang H; Yang ZL; Tian ZQ; Li JF
    Anal Chem; 2019 Apr; 91(8):5316-5322. PubMed ID: 30912431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How To Light Special Hot Spots in Multiparticle-Film Configurations.
    Chen S; Meng LY; Shan HY; Li JF; Qian L; Williams CT; Yang ZL; Tian ZQ
    ACS Nano; 2016 Jan; 10(1):581-7. PubMed ID: 26580830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates.
    Wang X; Li M; Meng L; Lin K; Feng J; Huang T; Yang Z; Ren B
    ACS Nano; 2014 Jan; 8(1):528-36. PubMed ID: 24328390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The moveable "hot spots" effect in an Au nanoparticles-Au plate coupled system.
    Sun Y; Zhang C; Yuan Y; Xu M; Yao J
    Nanoscale; 2020 Dec; 12(46):23789-23798. PubMed ID: 33237087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Surface Enhanced Raman Spectroscopic Studies on the Coupling Effect of Multilayer Au@SiO2 Film].
    Hu DJ; Zhang XJ; Xu MM; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1262-5. PubMed ID: 26415440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation.
    Shanthil M; Thomas R; Swathi RS; George Thomas K
    J Phys Chem Lett; 2012 Jun; 3(11):1459-64. PubMed ID: 26285622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges.
    Liu Y; Pedireddy S; Lee YH; Hegde RS; Tjiu WW; Cui Y; Ling XY
    Small; 2014 Dec; 10(23):4940-50. PubMed ID: 25048617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy.
    Zheng M; Zhu X; Chen Y; Xiang Q; Duan H
    Nanotechnology; 2017 Jan; 28(4):045303. PubMed ID: 27981948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
    Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L
    Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Near-Field Localization of Silver Core-Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering.
    Asapu R; Ciocarlan RG; Claes N; Blommaerts N; Minjauw M; Ahmad T; Dendooven J; Cool P; Bals S; Denys S; Detavernier C; Lenaerts S; Verbruggen SW
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41577-41585. PubMed ID: 29119785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.
    Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering.
    Cao YQ; Qin K; Zhu L; Qian X; Zhang XJ; Wu D; Li AD
    Sci Rep; 2017 Jul; 7(1):5161. PubMed ID: 28701788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.