These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. Chang H; Kang H; Yang JK; Jo A; Lee HY; Lee YS; Jeong DH ACS Appl Mater Interfaces; 2014 Aug; 6(15):11859-63. PubMed ID: 25078544 [TBL] [Abstract][Full Text] [Related]
23. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography. Ho CC; Zhao K; Lee TY Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350 [TBL] [Abstract][Full Text] [Related]
24. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detection. Chiang CY; Liu TY; Su YA; Wu CH; Cheng YW; Cheng HW; Jeng RJ Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970772 [TBL] [Abstract][Full Text] [Related]
25. Shedding Light on Surface-Enhanced Raman Scattering Hot Spots through Single-Molecule Super-Resolution Imaging. Willets KA; Stranahan SM; Weber ML J Phys Chem Lett; 2012 May; 3(10):1286-94. PubMed ID: 26286772 [TBL] [Abstract][Full Text] [Related]
26. Target-Triggered Catalytic Hairpin Assembly-Induced Core-Satellite Nanostructures for High-Sensitive "Off-to-On" SERS Detection of Intracellular MicroRNA. Liu C; Chen C; Li S; Dong H; Dai W; Xu T; Liu Y; Yang F; Zhang X Anal Chem; 2018 Sep; 90(17):10591-10599. PubMed ID: 30058321 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs. Jones S; Sinha SS; Pramanik A; Ray PC Nanoscale; 2016 Nov; 8(43):18301-18308. PubMed ID: 27714099 [TBL] [Abstract][Full Text] [Related]
28. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Li Z; Jiang S; Huo Y; Ning T; Liu A; Zhang C; He Y; Wang M; Li C; Man B Nanoscale; 2018 Mar; 10(13):5897-5905. PubMed ID: 29546897 [TBL] [Abstract][Full Text] [Related]
29. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering. Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658 [TBL] [Abstract][Full Text] [Related]
30. Fabrication optimization and application of 3D hybrid SERS substrates. Geng X; Wu C; Liu S; Han Y; Song L; Zhang Y RSC Adv; 2021 Sep; 11(50):31400-31407. PubMed ID: 35496872 [TBL] [Abstract][Full Text] [Related]
31. A close-packed 3D plasmonic superlattice of truncated octahedral gold nanoframes. Yoon J; Jang HJ; Jung I; Park S Nanoscale; 2017 Jun; 9(23):7708-7713. PubMed ID: 28561118 [TBL] [Abstract][Full Text] [Related]
32. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers. Sergiienko S; Moor K; Gudun K; Yelemessova Z; Bukasov R Phys Chem Chem Phys; 2017 Feb; 19(6):4478-4487. PubMed ID: 28120963 [TBL] [Abstract][Full Text] [Related]
33. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application. Huang Z; Lei X; Liu Y; Wang Z; Wang X; Wang Z; Mao Q; Meng G ACS Appl Mater Interfaces; 2015 Aug; 7(31):17247-54. PubMed ID: 26186260 [TBL] [Abstract][Full Text] [Related]
34. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets. Liu Y; Wu P ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937 [TBL] [Abstract][Full Text] [Related]
35. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
36. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates. Wang S; Tay LL; Liu H Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092 [TBL] [Abstract][Full Text] [Related]
37. Frequency-Domain Proof of the Existence of Atomic-Scale SERS Hot-Spots. Shin HH; Yeon GJ; Choi HK; Park SM; Lee KS; Kim ZH Nano Lett; 2018 Jan; 18(1):262-271. PubMed ID: 29206468 [TBL] [Abstract][Full Text] [Related]
38. Instantly Detecting Catalysts' Hot Spots Temperature In Situ during Photocatalysis by Operando Raman Spectroscopy. Wang QY; Chen YY; Ye RK; Liu Q; Chen HY; Yang H; Li MY; Hu JQ; Fang PP Anal Chem; 2021 Nov; 93(46):15517-15524. PubMed ID: 34726908 [TBL] [Abstract][Full Text] [Related]
39. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447 [TBL] [Abstract][Full Text] [Related]