These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 30912431)
41. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
42. Generation of ultralarge surface enhanced Raman spectroscopy (SERS)-active hot-spot volumes by an array of 2D nano-superlenses. Wei K; Shen Z; Malini O Anal Chem; 2012 Jan; 84(2):908-16. PubMed ID: 22107062 [TBL] [Abstract][Full Text] [Related]
43. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587 [TBL] [Abstract][Full Text] [Related]
44. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures. Bi X; Li X; Chen D; Du X ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515 [TBL] [Abstract][Full Text] [Related]
45. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering. Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422 [TBL] [Abstract][Full Text] [Related]
46. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
47. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
48. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Goh MS; Lee YH; Pedireddy S; Phang IY; Tjiu WW; Tan JM; Ling XY Langmuir; 2012 Oct; 28(40):14441-9. PubMed ID: 22970778 [TBL] [Abstract][Full Text] [Related]
49. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS. Dey P; Baumann V; Rodríguez-Fernández J Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32423172 [TBL] [Abstract][Full Text] [Related]
50. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Kurita M; Arakawa R; Kawasaki H Analyst; 2016 Oct; 141(20):5835-5841. PubMed ID: 27513340 [TBL] [Abstract][Full Text] [Related]
52. Magnetic tuning of SERS hot spots in polymer-coated magnetic-plasmonic iron-silver nanoparticles. Scaramuzza S; Polizzi S; Amendola V Nanoscale Adv; 2019 Jul; 1(7):2681-2689. PubMed ID: 36132716 [TBL] [Abstract][Full Text] [Related]
53. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars. Caldwell JD; Glembocki OJ; Bezares FJ; Kariniemi MI; Niinistö JT; Hatanpää TT; Rendell RW; Ukaegbu M; Ritala MK; Prokes SM; Hosten CM; Leskelä MA; Kasica R Opt Express; 2011 Dec; 19(27):26056-64. PubMed ID: 22274194 [TBL] [Abstract][Full Text] [Related]
54. Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing. Zhao F; Zeng J; Shih WC Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28657586 [TBL] [Abstract][Full Text] [Related]
55. High-Power Impulse Magnetron Sputter Deposition of Ag on Self-Assembled Au Nanoparticle Arrays at Low-Temperature Dewetting Conditions. Guan T; Liang S; Kang Y; Pensa E; Li D; Liang W; Liang Z; Bulut Y; Reck KA; Xiao T; Guo R; Drewes J; Strunskus T; Schwartzkopf M; Faupel F; Roth SV; Cortés E; Jiang L; Müller-Buschbaum P ACS Appl Mater Interfaces; 2024 Jul; 16(30):40286-40296. PubMed ID: 39013146 [TBL] [Abstract][Full Text] [Related]
56. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Radziuk D; Moehwald H Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814 [TBL] [Abstract][Full Text] [Related]
57. Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced Raman scattering. Lee A; Andrade GF; Ahmed A; Souza ML; Coombs N; Tumarkin E; Liu K; Gordon R; Brolo AG; Kumacheva E J Am Chem Soc; 2011 May; 133(19):7563-70. PubMed ID: 21513327 [TBL] [Abstract][Full Text] [Related]
58. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy. Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378 [TBL] [Abstract][Full Text] [Related]
59. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776 [TBL] [Abstract][Full Text] [Related]
60. Bimetallic Au/Ag Core-Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering. Dai L; Song L; Huang Y; Zhang L; Lu X; Zhang J; Chen T Langmuir; 2017 Jun; 33(22):5378-5384. PubMed ID: 28502174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]