These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30912532)

  • 1. Comment on "Decoding real space bonding descriptors in valence bond language" by A. Martín Pendás and E. Francisco, Phys. Chem. Chem. Phys., 2018, 20, 12368.
    Hiberty PC; Danovich D; Shaik S
    Phys Chem Chem Phys; 2019 Apr; 21(15):8170-8174. PubMed ID: 30912532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reply to the 'Comment on "Decoding real space bonding descriptors in valence bond language"' by S. Shaik, P. Hiberty and D. Danovich, Phys. Chem. Chem. Phys., 2019, 21, DOI: 10.1039/C8CP07225F.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2019 Apr; 21(15):8175-8178. PubMed ID: 30916088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding real space bonding descriptors in valence bond language.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2018 May; 20(18):12368-12372. PubMed ID: 29714368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-Shift Bonding Emerges as a Distinct Electron-Pair Bonding Family from Both Valence Bond and Molecular Orbital Theories.
    Zhang H; Danovich D; Wu W; Braïda B; Hiberty PC; Shaik S
    J Chem Theory Comput; 2014 Jun; 10(6):2410-8. PubMed ID: 26580761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-Shift Bonding: A New and Unique Form of Bonding.
    Shaik S; Danovich D; Galbraith JM; Braïda B; Wu W; Hiberty PC
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):984-1001. PubMed ID: 31476104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl?
    Su P; Song L; Wu W; Shaik S; Hiberty PC
    J Phys Chem A; 2008 Apr; 112(13):2988-97. PubMed ID: 18331015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accurate barrier for the hydrogen exchange reaction from valence bond theory: is this theory coming of age?
    Song L; Wu W; Hiberty PC; Danovich D; Shaik S
    Chemistry; 2003 Sep; 9(18):4540-7. PubMed ID: 14502640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Variety of Bond Analysis Methods, One Answer? An Investigation of the Element-Oxygen Bond of Hydroxides H
    Fugel M; Beckmann J; Jayatilaka D; Gibbs GV; Grabowsky S
    Chemistry; 2018 Apr; 24(23):6248-6261. PubMed ID: 29465756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence Bond Based Energy Decomposition Analysis Scheme and Its Application to Cation-π Interactions.
    Zhang Y; Chen S; Ying F; Su P; Wu W
    J Phys Chem A; 2018 Jul; 122(27):5886-5894. PubMed ID: 29901393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Results and perspectives of the MO-VB method. Application examples on the He2 and the LiH-He complexes.
    Cargnoni F; Raimondi M
    Phys Chem Chem Phys; 2010 Apr; 12(16):4224-32. PubMed ID: 20379516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent Effect on Dative and Ionic Bond Strengths: A Unified Theory from Potential Analysis and Valence-Bond Computations.
    Peng X; Li J; Fan Y; Wang X; Yin S; Wang C; Mo Y
    Chemistry; 2024 Sep; 30(53):e202402008. PubMed ID: 39031500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physical origin of large covalent-ionic resonance energies in some two-electron bonds.
    Hiberty PC; Ramozzi R; Song L; Wu W; Shaik S
    Faraday Discuss; 2007; 135():261-72; discussion 367-401, 503-6. PubMed ID: 17328432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valence-bond description of chemical reactions on Born-Oppenheimer molecular dynamics trajectories.
    Noguchi N; Nakano H
    J Chem Phys; 2009 Apr; 130(15):154309. PubMed ID: 19388748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ground and excited states of polyenyl radicals C2n-1H2n + 1 (n = 2-13): a valence bond study.
    Luo Y; Song L; Wu W; Danovich D; Shaik S
    Chemphyschem; 2004 Apr; 5(4):515-28. PubMed ID: 15139226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types.
    Zhang L; Ying F; Wu W; Hiberty PC; Shaik S
    Chemistry; 2009; 15(12):2979-89. PubMed ID: 19191241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A valence bond study of the low-lying states of the NF molecule.
    Su P; Wu W; Shaik S; Hiberty PC
    Chemphyschem; 2008 Jul; 9(10):1442-52. PubMed ID: 18509836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barriers of hydrogen abstraction vs halogen exchange: an experimental manifestation of charge-shift bonding.
    Hiberty PC; Megret C; Song L; Wu W; Shaik S
    J Am Chem Soc; 2006 Mar; 128(9):2836-43. PubMed ID: 16506761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge-shift bonding--a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach.
    Shaik S; Danovich D; Silvi B; Lauvergnat DL; Hiberty PC
    Chemistry; 2005 Oct; 11(21):6358-71. PubMed ID: 16086335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How valence bond theory can help you understand your (bio)chemical reaction.
    Shurki A; Derat E; Barrozo A; Kamerlin SC
    Chem Soc Rev; 2015 Mar; 44(5):1037-52. PubMed ID: 25352378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.