These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30912655)

  • 1. Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA.
    Pressman AD; Liu Z; Janzen E; Blanco C; Müller UF; Joyce GF; Pascal R; Chen IA
    J Am Chem Soc; 2019 Apr; 141(15):6213-6223. PubMed ID: 30912655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of in vitro evolution reveals the underlying distribution of catalytic activity among random sequences.
    Pressman A; Moretti JE; Campbell GW; Müller UF; Chen IA
    Nucleic Acids Res; 2017 Aug; 45(14):8167-8179. PubMed ID: 28645146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering pathways through ribozyme fitness landscapes using information theoretic quantification of epistasis.
    Charest N; Shen Y; Lai YC; Chen IA; Shea JE
    RNA; 2023 Nov; 29(11):1644-1657. PubMed ID: 37580126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Many Activities, One Structure: Functional Plasticity of Ribozyme Folds.
    Lau MW; Ferré-D'Amaré AR
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27869745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme.
    Curtis EA; Bartel DP
    RNA; 2013 Aug; 19(8):1116-28. PubMed ID: 23798664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA aminoacylation mediated by sequential action of two ribozymes and a nonactivated amino acid.
    Xu J; Appel B; Balke D; Wichert C; Müller S
    Chembiochem; 2014 May; 15(8):1200-9. PubMed ID: 24764272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential structures of a self-aminoacylating RNA.
    Illangasekare M; Kovalchuke O; Yarus M
    J Mol Biol; 1997 Dec; 274(4):519-29. PubMed ID: 9417932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid construction of empirical RNA fitness landscapes.
    Pitt JN; Ferré-D'Amaré AR
    Science; 2010 Oct; 330(6002):376-9. PubMed ID: 20947767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis.
    Mlýnský V; Kührová P; Jurečka P; Šponer J; Otyepka M; Banáš P
    J Phys Chem B; 2017 Dec; 121(48):10828-10840. PubMed ID: 29116814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Conformational Landscape of the Neutral Network of RNA Sequences That Connect Two Functional Distinctly Different Ribozymes.
    Knezic B; Keyhani-Goldau S; Schwalbe H
    Chembiochem; 2022 Apr; 23(7):e202200022. PubMed ID: 35112772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitness Landscapes and Evolution of Catalytic RNA.
    Saha R; Vázquez-Salazar A; Nandy A; Chen IA
    Annu Rev Biophys; 2024 Jul; 53(1):109-125. PubMed ID: 39013026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic RNA Fitness Landscapes of a Group I Ribozyme during Changes to the Experimental Environment.
    Peri G; Gibard C; Shults NH; Crossin K; Hayden EJ
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35020916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.
    Tang J; Breaker RR
    RNA; 1997 Aug; 3(8):914-25. PubMed ID: 9257650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evolution suggests multiple origins for the hammerhead ribozyme.
    Salehi-Ashtiani K; Szostak JW
    Nature; 2001 Nov; 414(6859):82-4. PubMed ID: 11689947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribozyme-catalyzed tRNA aminoacylation.
    Lee N; Bessho Y; Wei K; Szostak JW; Suga H
    Nat Struct Biol; 2000 Jan; 7(1):28-33. PubMed ID: 10625423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent properties as by-products of prebiotic evolution of aminoacylation ribozymes.
    Janzen E; Shen Y; Vázquez-Salazar A; Liu Z; Blanco C; Kenchel J; Chen IA
    Nat Commun; 2022 Jun; 13(1):3631. PubMed ID: 35752631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic minimization of RNA ligase ribozyme through large-scale design-synthesis-sequence cycles.
    Nomura Y; Yokobayashi Y
    Nucleic Acids Res; 2019 Sep; 47(17):8950-8960. PubMed ID: 31504757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocell Effects on RNA Folding, Function, and Evolution.
    Saha R; Choi JA; Chen IA
    Acc Chem Res; 2024 Jul; ():. PubMed ID: 39005057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous in vitro evolution of a ribozyme ligase: a model experiment for the evolution of a biomolecule.
    Ledbetter MP; Hwang TW; Stovall GM; Ellington AD
    Biochem Mol Biol Educ; 2013; 41(6):433-42. PubMed ID: 24214216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.