BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 30912722)

  • 1. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Delineation of Gross Tumor Volume Based on Magnetic Resonance Imaging by Performing a Novel Semisupervised Learning Framework in Nasopharyngeal Carcinoma.
    Liao W; He J; Luo X; Wu M; Shen Y; Li C; Xiao J; Wang G; Chen N
    Int J Radiat Oncol Biol Phys; 2022 Jul; 113(4):893-902. PubMed ID: 35381322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning For Automatic Gross Tumor Volumes Contouring in Esophageal Cancer Based on Contrast-Enhanced Computed Tomography Images: A Multi-Institutional Study.
    Zhang S; Li K; Sun Y; Wan Y; Ao Y; Zhong Y; Liang M; Wang L; Chen X; Pei X; Hu Y; Chen D; Li M; Shan H
    Int J Radiat Oncol Biol Phys; 2024 Mar; ():. PubMed ID: 38432286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolutional neural network in nasopharyngeal carcinoma: how good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI?
    Wong LM; Ai QYH; Mo FKF; Poon DMC; King AD
    Jpn J Radiol; 2021 Jun; 39(6):571-579. PubMed ID: 33544302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based accurate delineation of primary gross tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance imaging: A large-scale and multi-center study.
    Luo X; Liao W; He Y; Tang F; Wu M; Shen Y; Huang H; Song T; Li K; Zhang S; Zhang S; Wang G
    Radiother Oncol; 2023 Mar; 180():109480. PubMed ID: 36657723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-supervised model based on implicit neural representation and mutual learning (SIMN) for multi-center nasopharyngeal carcinoma segmentation on MRI.
    Han X; Chen Z; Lin G; Lv W; Zheng C; Lu W; Sun Y; Lu L
    Comput Biol Med; 2024 Jun; 175():108368. PubMed ID: 38663351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of rigid and deformable image registration for nasopharyngeal carcinoma radiotherapy planning with diagnostic position PET/CT.
    Kai Y; Arimura H; Toya R; Saito T; Matsuyama T; Fukugawa Y; Shiraishi S; Shimohigashi Y; Maruyama M; Oya N
    Jpn J Radiol; 2020 Mar; 38(3):256-264. PubMed ID: 31834577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.
    Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D
    Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images.
    Ke L; Deng Y; Xia W; Qiang M; Chen X; Liu K; Jing B; He C; Xie C; Guo X; Lv X; Li C
    Oral Oncol; 2020 Nov; 110():104862. PubMed ID: 32615440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Use of a Commercial Artificial Intelligence-Based Software for Autocontouring in Radiation Therapy: Geometric Performance and Dosimetric Impact.
    Hoque SMH; Pirrone G; Matrone F; Donofrio A; Fanetti G; Caroli A; Rista RS; Bortolus R; Avanzo M; Drigo A; Chiovati P
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contrast-enhanced MRI can be substituted by unenhanced MRI in identifying and automatically segmenting primary nasopharyngeal carcinoma with the aid of deep learning models: An exploratory study in large-scale population of endemic area.
    Deng Y; Li C; Lv X; Xia W; Shen L; Jing B; Li B; Guo X; Sun Y; Xie C; Ke L
    Comput Methods Programs Biomed; 2022 Apr; 217():106702. PubMed ID: 35228147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating contouring accuracy and dosimetry impact of current MRI-guided adaptive radiation therapy for brain metastases: a retrospective study.
    Wang B; Liu Y; Zhang J; Yin S; Liu B; Ding S; Qiu B; Deng X
    J Neurooncol; 2024 Mar; 167(1):123-132. PubMed ID: 38300388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies.
    Li C; Jing B; Ke L; Li B; Xia W; He C; Qian C; Zhao C; Mai H; Chen M; Cao K; Mo H; Guo L; Chen Q; Tang L; Qiu W; Yu Y; Liang H; Huang X; Liu G; Li W; Wang L; Sun R; Zou X; Guo S; Huang P; Luo D; Qiu F; Wu Y; Hua Y; Liu K; Lv S; Miao J; Xiang Y; Sun Y; Guo X; Lv X
    Cancer Commun (Lond); 2018 Sep; 38(1):59. PubMed ID: 30253801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of positron emission tomography on primary tumour delineation and dosimetric outcome in intensity modulated radiotherapy of early T-stage nasopharyngeal carcinoma.
    Wu VW; Leung WS; Wong KL; Chan YK; Law WL; Leung WK; Yu YL
    Radiat Oncol; 2016 Aug; 11(1):109. PubMed ID: 27558690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.
    Mazzara GP; Velthuizen RP; Pearlman JL; Greenberg HM; Wagner H
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):300-12. PubMed ID: 15093927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma (NPC) into distinct survival subgroups.
    Zhuo EH; Zhang WJ; Li HJ; Zhang GY; Jing BZ; Zhou J; Cui CY; Chen MY; Sun Y; Liu LZ; Cai HM
    Eur Radiol; 2019 Oct; 29(10):5590-5599. PubMed ID: 30874880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pancreatic gross tumor volume contouring on computed tomography (CT) compared with magnetic resonance imaging (MRI): Results of an international contouring conference.
    Hall WA; Heerkens HD; Paulson ES; Meijer GJ; Kotte AN; Knechtges P; Parikh PJ; Bassetti MF; Lee P; Aitken KL; Palta M; Myrehaug S; Koay EJ; Portelance L; Ben-Josef E; Erickson BA
    Pract Radiat Oncol; 2018; 8(2):107-115. PubMed ID: 29426692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Time-Phase Effect on 18F-FDG PET/CT Delineation Methods for Treatment Planning of Nasopharyngeal Carcinoma.
    Chen YZ; Li WF; Wang JY; Wang JM; Ou RY; Zheng XW; Xu YS; Zhao L
    Clin Nucl Med; 2016 May; 41(5):354-61. PubMed ID: 26859212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Analysis of Image Data Based on Detailed MR Image Reports for Nasopharyngeal Carcinoma Prognosis.
    Cui C; Wang S; Zhou J; Dong A; Xie F; Li H; Liu L
    Biomed Res Int; 2020; 2020():8068913. PubMed ID: 32149139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.