These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30912934)

  • 1. Promoting Surface-Mediated Oxygen Reduction Reaction of Solid Catalysts in Metal-O
    Zhang P; Liu L; He X; Liu X; Wang H; He J; Zhao Y
    J Am Chem Soc; 2019 Apr; 141(15):6263-6270. PubMed ID: 30912934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.
    Cao R; Walter ED; Xu W; Nasybulin EN; Bhattacharya P; Bowden ME; Engelhard MH; Zhang JG
    ChemSusChem; 2014 Sep; 7(9):2436-40. PubMed ID: 25045007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.
    Yoon KR; Kim DS; Ryu WH; Song SH; Youn DY; Jung JW; Jeon S; Park YJ; Kim ID
    ChemSusChem; 2016 Aug; 9(16):2080-8. PubMed ID: 27453065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct
    Zhao Z; Zhang X; Zhou Z; Wang E; Peng Z
    Nano Lett; 2022 Jan; 22(1):501-507. PubMed ID: 34962821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries.
    Ryu WH; Gittleson FS; Thomsen JM; Li J; Schwab MJ; Brudvig GW; Taylor AD
    Nat Commun; 2016 Oct; 7():12925. PubMed ID: 27759005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.
    Lu YC; Gasteiger HA; Shao-Horn Y
    J Am Chem Soc; 2011 Nov; 133(47):19048-51. PubMed ID: 22044022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.
    Yi J; Zhou H
    ChemSusChem; 2016 Sep; 9(17):2391-6. PubMed ID: 27487523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium-Oxygen Batteries.
    Hwang C; Yoo J; Jung GY; Joo SH; Kim J; Cha A; Han JG; Choi NS; Kang SJ; Lee SY; Kwak SK; Song HK
    ACS Nano; 2019 Aug; 13(8):9190-9197. PubMed ID: 31319025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Binders and Solvents on Stability of Ru/RuO
    Vankova S; Francia C; Amici J; Zeng J; Bodoardo S; Penazzi N; Collins G; Geaney H; O'Dwyer C
    ChemSusChem; 2017 Feb; 10(3):575-586. PubMed ID: 27899004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction with Stable Quinone in Li-O
    Liu X; Zhang P; Liu L; Feng J; He X; Song X; Han Q; Wang H; Peng Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10607-10615. PubMed ID: 32031771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.
    Feng N; He P; Zhou H
    ChemSusChem; 2015 Feb; 8(4):600-2. PubMed ID: 25641874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.
    Wu G; Mack NH; Gao W; Ma S; Zhong R; Han J; Baldwin JK; Zelenay P
    ACS Nano; 2012 Nov; 6(11):9764-76. PubMed ID: 23036092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of Novel Li-Air Battery Catalyst Materials by a Thin Film Combinatorial Materials Approach.
    Hauck JG; McGinn PJ
    ACS Comb Sci; 2015 Jun; 17(6):355-64. PubMed ID: 25965839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA
    ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles.
    Yilmaz E; Yogi C; Yamanaka K; Ohta T; Byon HR
    Nano Lett; 2013 Oct; 13(10):4679-84. PubMed ID: 24024674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance.
    Guo X; Sun B; Su D; Liu X; Liu H; Wang Y; Wang G
    Sci Bull (Beijing); 2017 Mar; 62(6):442-452. PubMed ID: 36659288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.