BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30913225)

  • 1. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective optogenetic activation of NaV1.7-expressing afferents in NaV1.7-ChR2 mice induces nocifensive behavior without affecting responses to mechanical and thermal stimuli.
    Maruta T; Hidaka K; Kouroki S; Koshida T; Kurogi M; Kage Y; Mizuno S; Shirasaka T; Yanagita T; Takahashi S; Takeya R; Tsuneyoshi I
    PLoS One; 2022; 17(10):e0275751. PubMed ID: 36201719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Regulation of Bladder Pain and Voiding Function by Sensory Afferent Populations Revealed by Selective Optogenetic Activation.
    DeBerry JJ; Samineni VK; Copits BA; Sullivan CJ; Vogt SK; Albers KM; Davis BM; Gereau RW
    Front Integr Neurosci; 2018; 12():5. PubMed ID: 29483864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgene is specifically and functionally expressed in retinal inhibitory interneurons in the VGAT-ChR2-EYFP mouse.
    Xu GZ; Cui LJ; Liu AL; Zhou W; Gong X; Zhong YM; Yang XL; Weng SJ
    Neuroscience; 2017 Nov; 363():107-119. PubMed ID: 28918256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of channelrhodopsin-2 localized within the deep CA1 hippocampal sublayer in the Thy1 line 18 mouse.
    Dobbins DL; Klorig DC; Smith T; Godwin DW
    Brain Res; 2018 Jan; 1679():179-184. PubMed ID: 29191773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice.
    Chang WJ; Chang WP; Shyu BC
    Mol Brain; 2017 Sep; 10(1):42. PubMed ID: 28865483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Depolarization of DCX-Expressing Cells Promoted Cognitive Recovery and Maturation of Newborn Neurons via the Wnt/β-Catenin Pathway.
    Zhao ML; Chen SJ; Li XH; Wang LN; Chen F; Zhong SJ; Yang C; Sun SK; Li JJ; Dong HJ; Dong YQ; Wang Y; Chen C
    J Alzheimers Dis; 2018; 63(1):303-318. PubMed ID: 29614674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2.
    Reinbothe TM; Safi F; Axelsson AS; Mollet IG; Rosengren AH
    Islets; 2014; 6(1):e28095. PubMed ID: 25483880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses.
    Makadia PA; Najjar SA; Saloman JL; Adelman P; Feng B; Margiotta JF; Albers KM; Davis BM
    J Neurosci; 2018 Jun; 38(25):5788-5798. PubMed ID: 29789376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization.
    Cai YQ; Wang W; Hou YY; Pan ZZ
    Mol Pain; 2014 Nov; 10():70. PubMed ID: 25410898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice.
    Hedrick T; Danskin B; Larsen RS; Ollerenshaw D; Groblewski P; Valley M; Olsen S; Waters J
    PLoS One; 2016; 11(5):e0156596. PubMed ID: 27243816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of an optogenetic model for olfactory stimulation.
    Genovese F; Thews M; Möhrlen F; Frings S
    J Physiol; 2016 Jul; 594(13):3501-16. PubMed ID: 26857095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters.
    Lee SY; George JH; Nagel DA; Ye H; Kueberuwa G; Seymour LW
    J Tissue Eng Regen Med; 2019 Mar; 13(3):369-384. PubMed ID: 30550638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread optogenetic expression in macaque cortex obtained with MR-guided, convection enhanced delivery (CED) of AAV vector to the thalamus.
    Yazdan-Shahmorad A; Tian N; Kharazia V; Samaranch L; Kells A; Bringas J; He J; Bankiewicz K; Sabes PN
    J Neurosci Methods; 2018 Jan; 293():347-358. PubMed ID: 29042259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operant responding for optogenetic excitation of LDTg inputs to the VTA requires D1 and D2 dopamine receptor activation in the NAcc.
    Steidl S; O'Sullivan S; Pilat D; Bubula N; Brown J; Vezina P
    Behav Brain Res; 2017 Aug; 333():161-170. PubMed ID: 28666837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing.
    Madisen L; Mao T; Koch H; Zhuo JM; Berenyi A; Fujisawa S; Hsu YW; Garcia AJ; Gu X; Zanella S; Kidney J; Gu H; Mao Y; Hooks BM; Boyden ES; Buzsáki G; Ramirez JM; Jones AR; Svoboda K; Han X; Turner EE; Zeng H
    Nat Neurosci; 2012 Mar; 15(5):793-802. PubMed ID: 22446880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of optogenetic channel rhodopsin (ChR2) function in aging mice: Implications for pharmacological studies of inhibitory synaptic transmission, quantal content, and calcium homeostasis.
    DuBois DW; Murchison DA; Mahnke AH; Bang E; Winzer-Serhan U; Griffith WH; Souza KA
    Neuropharmacology; 2023 Nov; 238():109651. PubMed ID: 37414332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.