These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30913225)

  • 41. Isolation and Crystallization of the D156C Form of Optogenetic ChR2.
    Zhang L; Wang K; Ning S; Pedersen PA; Duelli AS; Gourdon PE
    Cells; 2022 Mar; 11(5):. PubMed ID: 35269517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pancreatic islet progenitor cells in neurogenin 3-yellow fluorescent protein knock-add-on mice.
    Mellitzer G; Martín M; Sidhoum-Jenny M; Orvain C; Barths J; Seymour PA; Sander M; Gradwohl G
    Mol Endocrinol; 2004 Nov; 18(11):2765-76. PubMed ID: 15297605
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Separate optogenetic manipulation of Nerve/glial antigen 2 (NG2) glia and mural cells using the NG2 promoter.
    Oishi M; Passlick S; Yamazaki Y; Unekawa M; Adachi R; Yamada M; Imayoshi I; Abe Y; Steinhäuser C; Tanaka KF
    Glia; 2023 Feb; 71(2):317-333. PubMed ID: 36165697
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optogenetic control of cell differentiation in channelrhodopsin-2-expressing OS3, a bipotential glial progenitor cell line.
    Ono K; Suzuki H; Yamamoto R; Sahashi H; Takido Y; Sawada M
    Neurochem Int; 2017 Mar; 104():49-63. PubMed ID: 28069421
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transgenic mice expressing yellow fluorescent protein under control of the human tyrosine hydroxylase promoter.
    Choi EY; Yang JW; Park MS; Sun W; Kim H; Kim SU; Lee MA
    J Neurosci Res; 2012 Oct; 90(10):1949-59. PubMed ID: 22714400
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corticotropin-releasing hormone projections from the paraventricular nucleus of the hypothalamus to the nucleus of the solitary tract increase blood pressure.
    Wang LA; Nguyen DH; Mifflin SW
    J Neurophysiol; 2019 Feb; 121(2):602-608. PubMed ID: 30565964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cardiac optogenetics.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1386-9. PubMed ID: 23366158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2.
    Herman AM; Huang L; Murphey DK; Garcia I; Arenkiel BR
    Elife; 2014; 3():e01481. PubMed ID: 24473077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An efficient cell type specific conjugating method for incorporating various nanostructures to genetically encoded AviTag expressed optogenetic opsins.
    Bang Y; Kim YY; Song YK
    Biochem Biophys Res Commun; 2020 Sep; 530(3):581-587. PubMed ID: 32753317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice.
    Porrero C; Rubio-Garrido P; Avendaño C; Clascá F
    Brain Res; 2010 Jul; 1345():59-72. PubMed ID: 20510892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells.
    Peng K; Liu S; Lv F; Fu X; Hussain S; Zhao H; Liu L; Wang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24655-24661. PubMed ID: 32391678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Redox-Modifying Agents on the Activity of Channelrhodopsin-2.
    Wu BM; Leng TD; Inoue K; Li J; Xiong ZG
    CNS Neurosci Ther; 2017 Mar; 23(3):216-221. PubMed ID: 27917616
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chronic activation of the D156A point mutant of Channelrhodopsin-2 signals apoptotic cell death: the good and the bad.
    Perny M; Muri L; Dawson H; Kleinlogel S
    Cell Death Dis; 2016 Nov; 7(11):e2447. PubMed ID: 27809305
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of optically sensitive liver cells.
    Vajanthri KY; Yadav P; Poddar S; Mahto SK
    Tissue Cell; 2018 Jun; 52():129-134. PubMed ID: 29857822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multidimensional screening yields channelrhodopsin variants having improved photocurrent and order-of-magnitude reductions in calcium and proton currents.
    Cho YK; Park D; Yang A; Chen F; Chuong AS; Klapoetke NC; Boyden ES
    J Biol Chem; 2019 Mar; 294(11):3806-3821. PubMed ID: 30610117
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glutamate-induced elevations in intracellular chloride concentration in hippocampal cell cultures derived from EYFP-expressing mice.
    Slemmer JE; Matsushita S; De Zeeuw CI; Weber JT; Knöpfel T
    Eur J Neurosci; 2004 Jun; 19(11):2915-22. PubMed ID: 15182298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
    Hamada S; Nagase M; Yoshizawa T; Hagiwara A; Isomura Y; Watabe AM; Ohtsuka T
    Commun Biol; 2021 Apr; 4(1):461. PubMed ID: 33846537
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of channelrhodopsin for activation of CNS neurons.
    Britt JP; McDevitt RA; Bonci A
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.