These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30913254)

  • 1. P2000 - A high-nitrogen austenitic steel for application in bone surgery.
    Becerikli M; Jaurich H; Wallner C; Wagner JM; Dadras M; Jettkant B; Pöhl F; Seifert M; Jung O; Mitevski B; Karkar A; Lehnhardt M; Fischer A; Kauther MD; Behr B
    PLoS One; 2019; 14(3):e0214384. PubMed ID: 30913254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells.
    Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P
    Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new austenitic stainless steel with negligible nickel content: an in vitro and in vivo comparative investigation.
    Fini M; Nicoli Aldini N; Torricelli P; Giavaresi G; Borsari V; Lenger H; Bernauer J; Giardino R; Chiesa R; Cigada A
    Biomaterials; 2003 Dec; 24(27):4929-39. PubMed ID: 14559006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility.
    Peng C; Izawa T; Zhu L; Kuroda K; Okido M
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.
    Li M; Yin T; Wang Y; Du F; Zou X; Gregersen H; Wang G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():641-8. PubMed ID: 25175259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser surface modification of 316L stainless steel.
    Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC; Davis EE
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-manganese and nitrogen stabilized austenitic stainless steel (Fe-18Cr-22Mn-0.65N): a material with a bright future for orthopedic implant devices.
    Kumar CS; Singh G; Poddar S; Varshney N; Mahto SK; Podder AS; Chattopadhyay K; Rastogi A; Singh V; Mahobia GS
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34517359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects.
    Jing D; Tong S; Zhai M; Li X; Cai J; Wu Y; Shen G; Zhang X; Xu Q; Guo Z; Luo E
    Sci Rep; 2015 Nov; 5():17134. PubMed ID: 26601709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.
    Assad M; Lemieux N; Rivard CH; Yahia LH
    Biomed Mater Eng; 1999; 9(1):1-12. PubMed ID: 10436848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.
    Morais S; Dias N; Sousa JP; Fernandes MH; Carvalho GS
    J Biomed Mater Res; 1999 Feb; 44(2):176-90. PubMed ID: 10397919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces.
    Schmidt C; Ignatius AA; Claes LE
    J Biomed Mater Res; 2001 Feb; 54(2):209-15. PubMed ID: 11093180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications.
    Gordin DM; Busardo D; Cimpean A; Vasilescu C; Höche D; Drob SI; Mitran V; Cornen M; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4173-82. PubMed ID: 23910330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.
    Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB
    Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vivo comparison of the Ni-free steel X13CrMnMoN18-14-3 and titanium alloy implants in rabbit femora - A promising steel for orthopedic surgery.
    Kauther MD; Gödde K; Burggraf M; Hilken G; Wissmann A; Krüger C; Lask S; Jung O; Mitevski B; Fischer A; Dudda M; Behr B; Herten M
    J Biomed Mater Res B Appl Biomater; 2021 Jun; 109(6):797-807. PubMed ID: 33166074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.
    Tulinski M; Jurczyk M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8779-82. PubMed ID: 23421285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of nickel from 316L stainless steel into contacting osteoblastic cells and metal ion interference with BMP-2-induced alkaline phosphatase.
    Mölders M; Felix J; Bingmann D; Hirner A; Wiemann M
    J Biomed Mater Res A; 2007 Nov; 83(2):303-12. PubMed ID: 17437303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.