These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30913439)

  • 1. Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns.
    Liu F; Xu B; He Y; Brookes PC; Xu J
    Environ Pollut; 2019 Jun; 249():406-413. PubMed ID: 30913439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles.
    Xu B; Lian Z; Liu F; Yu Y; He Y; Brookes PC; Xu J
    Environ Pollut; 2019 May; 248():929-937. PubMed ID: 30856508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal.
    He Y; Zeng F; Lian Z; Xu J; Brookes PC
    Environ Pollut; 2015 Oct; 205():43-51. PubMed ID: 26005862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol.
    Rao MA; Di Rauso Simeone G; Scelza R; Conte P
    Chemosphere; 2017 Nov; 186():193-201. PubMed ID: 28778017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of solution chemistry of electrolyte on the sorption of pentachlorophenol and phenanthrene by natural hematite nanoparticles.
    Zeng F; He Y; Lian Z; Xu J
    Sci Total Environ; 2014 Jan; 466-467():577-85. PubMed ID: 23959215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol.
    Chien SC; Chen SH; Li CJ
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5269-5279. PubMed ID: 28803381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of water solubility and mobility of phenanthrene by natural soil nanoparticles.
    Li W; Zhu X; He Y; Xing B; Xu J; Brookes PC
    Environ Pollut; 2013 May; 176():228-33. PubMed ID: 23434773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation and long-term site management of soil contaminated with pentachlorophenol (PCP) and heavy metals.
    Mills T; Arnold B; Sivakumaran S; Northcott G; Vogeler I; Robinson B; Norling C; Leonil D
    J Environ Manage; 2006 May; 79(3):232-41. PubMed ID: 16202508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil.
    Ferro AM; Sims RC; Bugbee B
    J Environ Qual; 1994; 23(2):272-9. PubMed ID: 11539191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergetic effect of hydrochar on the transport of anatase titanium dioxide nanoparticles in the presence of phosphate in saturated quartz sand.
    Cheng X; Xu N; Huangfu X; Zhou X; Zhang M
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):28864-28874. PubMed ID: 30099712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishable co-transport mechanisms of phenanthrene and oxytetracycline with oxidized-multiwalled carbon nanotubes through saturated soil and sediment columns: vehicle and competition effects.
    Fang J; Wang M; Shen B; Zhang L; Lin D
    Water Res; 2017 Jan; 108():271-279. PubMed ID: 27836173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.
    Chen M; Wang D; Yang F; Xu X; Xu N; Cao X
    Environ Pollut; 2017 Nov; 230():540-549. PubMed ID: 28709053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pentachlorophenol sorption by variable-charge soils in methanol-water mixture: pH effect at the low solvent volume fraction.
    Hyun S; Lee LS
    Chemosphere; 2008 Jan; 70(3):503-10. PubMed ID: 17662340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns.
    Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of phenanthrene by earthworms - A pathway for understanding the fate of hydrophobic organic contaminants in soil-earthworm systems.
    Shi Z; Zhang F; Wang C
    J Environ Manage; 2018 Apr; 212():115-120. PubMed ID: 29428646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil.
    Park SK; Bielefeldt AR
    Water Res; 2003 Nov; 37(19):4663-72. PubMed ID: 14568053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of engineered nanoparticles in partially saturated sand columns.
    Yecheskel Y; Dror I; Berkowitz B
    J Hazard Mater; 2016 Jul; 311():254-62. PubMed ID: 26995325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.