These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30913492)

  • 1. Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels.
    Joshi G; Okeyoshi K; Mitsumata T; Kaneko T
    J Colloid Interface Sci; 2019 Jun; 546():184-191. PubMed ID: 30913492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Milliscale Self-Integration of Megamolecule Biopolymers on a Drying Gas-Aqueous Liquid Crystalline Interface.
    Okeyoshi K; Okajima MK; Kaneko T
    Biomacromolecules; 2016 Jun; 17(6):2096-103. PubMed ID: 27077450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Unidirectionally-oriented Membrane Formation of Supra-polysaccharides Sacran and Application to Drug Delivery System].
    Okeyoshi K; Okajima MK; Kaneko T
    Yakugaku Zasshi; 2018; 138(4):503-507. PubMed ID: 29607996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels.
    Sornkamnerd S; Okajima MK; Matsumura K; Kaneko T
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44834-44843. PubMed ID: 30480994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for the Self-integration of Megamolecular Biopolymers on the Drying Air-LC Interface.
    Okeyoshi K; Osada K; Okajima MK; Kaneko T
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic, porous hydrogels templated by lyotropic chromonic liquid crystals.
    Wang S; Maruri DP; Boothby JM; Lu X; Rivera-Tarazona LK; Varner VD; Ware TH
    J Mater Chem B; 2020 Aug; 8(31):6988-6998. PubMed ID: 32626869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk Alignment of Chromonic Aggregates During Swelling of Hydrogels.
    Shiraishi K; Takahashi S; Le KV; Naka Y; Sasaki T
    Macromol Rapid Commun; 2020 May; 41(10):e1900631. PubMed ID: 32129910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the extrusion process on xanthan gum behaviour.
    Sereno NM; Hill SE; Mitchell JR
    Carbohydr Res; 2007 Jul; 342(10):1333-42. PubMed ID: 17466288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Polarized Fluorescent Illumination Using Liquid Crystal Phase.
    Gim MJ; Turlapati S; Debnath S; Rao NV; Yoon DK
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3143-9. PubMed ID: 26783766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity.
    Borisova A; De Bruyn M; Budarin VL; Shuttleworth PS; Dodson JR; Segatto ML; Clark JH
    Macromol Rapid Commun; 2015 Apr; 36(8):774-9. PubMed ID: 25721151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convective meniscus splitting of polysaccharide microparticles on various surfaces.
    Okeyoshi K; Yamashita M; Budpud K; Joshi G; Kaneko T
    Sci Rep; 2021 Jan; 11(1):767. PubMed ID: 33436957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and swelling behavior of xanthan-based hydrogels.
    Bueno VB; Bentini R; Catalani LH; Petri DF
    Carbohydr Polym; 2013 Feb; 92(2):1091-9. PubMed ID: 23399133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of cross-linking agent on interpenetrating polymer network properties.
    Hamcerencu M; Desbrieres J; Popa M; Riess G
    Biomacromolecules; 2009 Jul; 10(7):1911-22. PubMed ID: 19499889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone.
    Hamcerencu M; Desbrieres J; Popa M; Riess G
    Carbohydr Polym; 2012 Jun; 89(2):438-47. PubMed ID: 24750741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.
    Guo B; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2011 Jul; 12(7):2601-9. PubMed ID: 21574634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of xanthan gum as polysaccharide in tissue engineering: A review.
    Kumar A; Rao KM; Han SS
    Carbohydr Polym; 2018 Jan; 180():128-144. PubMed ID: 29103488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel.
    Zheng M; Lian F; Xiong Y; Liu B; Zhu Y; Miao S; Zhang L; Zheng B
    Food Chem; 2019 Jan; 272():574-579. PubMed ID: 30309583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty-acid monolayers at the nematic/water interface: phases and liquid-crystal alignment.
    Price AD; Schwartz DK
    J Phys Chem B; 2007 Feb; 111(5):1007-15. PubMed ID: 17266255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions.
    Xu L; Xu G; Liu T; Chen Y; Gong H
    Carbohydr Polym; 2013 Jan; 92(1):516-22. PubMed ID: 23218329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives.
    Agnello S; Gasperini L; Mano JF; Pitarresi G; Palumbo FS; Reis RL; Giammona G
    Int J Biol Macromol; 2017 May; 98():646-653. PubMed ID: 28189790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.