BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30913510)

  • 1. Bioinspired synthesis of organic-inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay.
    Tang Q; Zhang L; Tan X; Jiao L; Wei Q; Li H
    Biosens Bioelectron; 2019 May; 133():94-99. PubMed ID: 30913510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BSA-Cu
    Wang Z; Tu J; Dong P; Bai Y; Han J; Xie G
    Anal Chim Acta; 2022 Jun; 1210():339873. PubMed ID: 35595359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-Vis detection of hydrogen peroxide using horseradish peroxidase/copper phosphate hybrid nanoflowers.
    Yang C; Zhang M; Wang W; Wang Y; Tang J
    Enzyme Microb Technol; 2020 Oct; 140():109620. PubMed ID: 32912680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired DNA-Inorganic Hybrid Nanoflowers Combined with a Personal Glucose Meter for Onsite Detection of miRNA.
    Wu T; Yang Y; Cao Y; Song Y; Xu LP; Zhang X; Wang S
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42050-42057. PubMed ID: 30457317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.
    He G; Hu W; Li CM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():613-618. PubMed ID: 26322475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocatalyst and Colorimetric/Fluorescent Dual Biosensors of H
    Gao J; Liu H; Pang L; Guo K; Li J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30441-30450. PubMed ID: 30106269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor.
    Sun J; Ge J; Liu W; Lan M; Zhang H; Wang P; Wang Y; Niu Z
    Nanoscale; 2014 Jan; 6(1):255-62. PubMed ID: 24186239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification.
    Yu Y; Fei X; Tian J; Xu L; Wang X; Wang Y
    Colloids Surf B Biointerfaces; 2015 Jun; 130():299-304. PubMed ID: 25935264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pregnancy test strip for detection of pathogenic bacteria by using concanavalin A-human chorionic gonadotropin-Cu
    Bu S; Wang K; Ju C; Han Y; Li Z; Du P; Hao Z; Li C; Liu W; Wan J
    Mikrochim Acta; 2018 Sep; 185(10):464. PubMed ID: 30225733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers.
    Zhu J; Wen M; Wen W; Du D; Zhang X; Wang S; Lin Y
    Biosens Bioelectron; 2018 Nov; 120():175-187. PubMed ID: 30176421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker.
    Liu Y; Chen J; Du M; Wang X; Ji X; He Z
    Biosens Bioelectron; 2017 Jun; 92():68-73. PubMed ID: 28187301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-assembled 3D nanoflowers based nano-ELISA platform for the sensitive detection of pyridaben.
    Chen H; An L; Li M; Liu H; Jin Z; Ma H; Ma J; Zhou J; Duan R; Zhang D; Cao X; Wang T; Wu X
    Food Chem; 2024 Jul; 445():138756. PubMed ID: 38394906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemiluminescence immunosensor based on Cu
    Wang N; Yang J; Luo Z; Qin D; Wu Y; Deng B
    Mikrochim Acta; 2023 Sep; 190(10):389. PubMed ID: 37700114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu
    Wei H; Bu S; Zhang W; Ma L; Liu X; Wang Z; Li Z; Hao Z; He X; Wan J
    Analyst; 2021 Jul; 146(15):4841-4847. PubMed ID: 34223580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.
    Wei T; Du D; Zhu MJ; Lin Y; Dai Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6329-35. PubMed ID: 26894752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing interfaces for evaluation of cell surface sialic acid.
    Cao H; Yang DP; Ye D; Zhang X; Fang X; Zhang S; Liu B; Kong J
    Biosens Bioelectron; 2015 Jun; 68():329-335. PubMed ID: 25599845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol.
    Lin Z; Xiao Y; Yin Y; Hu W; Liu W; Yang H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10775-82. PubMed ID: 24937087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
    Li K; Wang J; He Y; Abdulrazaq MA; Yan Y
    J Biotechnol; 2018 Sep; 281():87-98. PubMed ID: 29928917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic -mineralized multifunctional nanoflowers for anodic-stripping voltammetric immunoassay of rehabilitation-related proteins.
    Cai F; Tang D; Wang J; Lin Y
    Analyst; 2021 Dec; 147(1):80-86. PubMed ID: 34846386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and demonstration of functionalized inorganic-organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme.
    Nag R; Rao CP
    J Mater Chem B; 2021 Apr; 9(16):3523-3532. PubMed ID: 33909739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.