These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A Highly Sensitive and Reliable Strain Sensor Using a Hierarchical 3D and Ordered Network of Carbon Nanotubes. Seo J; Lee TJ; Lim C; Lee S; Rui C; Ann D; Lee SB; Lee H Small; 2015 Jul; 11(25):2990-4. PubMed ID: 25720850 [TBL] [Abstract][Full Text] [Related]
7. FEM Analysis of Buckled Dielectric Thin-Film Packaging Based on 3D Direct Numerical Simulation. Seok S Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512623 [TBL] [Abstract][Full Text] [Related]
8. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Shahrokhian S; Khaki Sanati E; Hosseini H Biosens Bioelectron; 2018 Jul; 112():100-107. PubMed ID: 29702380 [TBL] [Abstract][Full Text] [Related]
9. Large-Area Buckled MoS2 Films on the Graphene Substrate. Kim SJ; Kim DW; Lim J; Cho SY; Kim SO; Jung HT ACS Appl Mater Interfaces; 2016 Jun; 8(21):13512-9. PubMed ID: 27144288 [TBL] [Abstract][Full Text] [Related]
10. Developing Efficient Thin Film Temperature Sensors Utilizing Layered Carbon Nanotube Films. Sarma S; Lee JH Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30241384 [TBL] [Abstract][Full Text] [Related]
11. Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates. Xiong X; Chen CL; Ryan P; Busnaina AA; Jung YJ; Dokmeci MR Nanotechnology; 2009 Jul; 20(29):295302. PubMed ID: 19567952 [TBL] [Abstract][Full Text] [Related]
12. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations. Lee BM; Loh KJ Nanotechnology; 2017 Apr; 28(15):155502. PubMed ID: 28244878 [TBL] [Abstract][Full Text] [Related]
13. Wrinkling of a thin film on a nematic liquid-crystal elastomer. Soni H; Pelcovits RA; Powers TR Phys Rev E; 2016 Jul; 94(1-1):012701. PubMed ID: 27575192 [TBL] [Abstract][Full Text] [Related]
14. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity. Viet NX; Kishimoto S; Ohno Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689 [TBL] [Abstract][Full Text] [Related]
16. Recent progress in chemical detection with single-walled carbon nanotube networks. Vichchulada P; Zhang Q; Lay MD Analyst; 2007 Aug; 132(8):719-23. PubMed ID: 17646869 [TBL] [Abstract][Full Text] [Related]
17. Humidity-Controlled Dynamic Engineering of Buckling Dimensionality in MoS Wang E; Chen Z; Shi R; Xiong Z; Xin Z; Wang B; Guo J; Peng R; Wu Y; Li C; Ren H; Li X; Liu K ACS Nano; 2022 Sep; 16(9):14157-14167. PubMed ID: 36053054 [TBL] [Abstract][Full Text] [Related]
19. Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates. Bae EJ; Min YS; Kim UJ; Park W Nanotechnology; 2007 Dec; 18(49):495203. PubMed ID: 20442469 [TBL] [Abstract][Full Text] [Related]
20. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]