These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30913554)

  • 1. Digital image analysis for measuring nanogap distance produced by adhesion lithography.
    Kano S; Kawazu T; Yamazaki A; Fujii M
    Nanotechnology; 2019 Jul; 30(28):285303. PubMed ID: 30913554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
    Chung YH; Lee T; Park HJ; Yun WS; Min J; Choi JW
    Nanotechnology; 2013 Sep; 24(36):365301. PubMed ID: 23942185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography.
    Qin L; Huang Y; Xia F; Wang L; Ning J; Chen H; Wang X; Zhang W; Peng Y; Liu Q; Zhang Z
    Nano Lett; 2020 Jul; 20(7):4916-4923. PubMed ID: 32559096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography.
    Beesley DJ; Semple J; Krishnan Jagadamma L; Amassian A; McLachlan MA; Anthopoulos TD; deMello JC
    Nat Commun; 2014 May; 5():3933. PubMed ID: 24861953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of nanogap separation by surface-catalyzed chemical deposition.
    Park HJ; Lee CY; Chung YH; Chi YS; Choi IS; Yun WS
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6400-3. PubMed ID: 22121723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust nanogap electrodes by self-terminating electroless gold plating.
    Serdio V VM; Azuma Y; Takeshita S; Muraki T; Teranishi T; Majima Y
    Nanoscale; 2012 Nov; 4(22):7161-7. PubMed ID: 23069983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular crystal lithography: a facile and low-cost approach to fabricate nanogap electrodes.
    Jiang L; Dong H; Meng Q; Tan J; Jiang W; Xu C; Wang Z; Hu W
    Adv Mater; 2012 Feb; 24(5):694-8. PubMed ID: 22038893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.
    Hammond JL; Rosamond MC; Sivaraya S; Marken F; Estrela P
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication and single electron transport of Au nano-particles placed between Nb nanogap electrodes.
    Nishino T; Negishi R; Kawao M; Nagata T; Ozawa H; Ishibashi K
    Nanotechnology; 2010 Jun; 21(22):225301. PubMed ID: 20453283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Channel Gate-Tunable Diodes Obtained by Asymmetric Contact and Adhesion Lithography on Fluoropolymers.
    Kim M; Kim S; Yoo H
    Small; 2023 Aug; 19(35):e2208144. PubMed ID: 37096940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Amplification in Side-by-Side Attoliter Nanogap Transducers.
    Zafarani HR; Mathwig K; Sudhölter EJR; Rassaei L
    ACS Sens; 2017 Jun; 2(6):724-728. PubMed ID: 28670622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward sub-20 nm hybrid nanofabrication by combining the molecular ruler method and electron beam lithography.
    Li CB; Hasegawa T; Tanaka H; Miyazaki H; Odaka S; Tsukagoshi K; Aono M
    Nanotechnology; 2010 Dec; 21(49):495304. PubMed ID: 21079291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography.
    Wyatt-Moon G; Georgiadou DG; Semple J; Anthopoulos TD
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41965-41972. PubMed ID: 29172422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleaved-edge-overgrowth nanogap electrodes.
    Luber SM; Bichler M; Abstreiter G; Tornow M
    Nanotechnology; 2011 Feb; 22(6):065301. PubMed ID: 21212484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and fabrication of crack-junctions.
    Dubois V; Niklaus F; Stemme G
    Microsyst Nanoeng; 2017; 3():17042. PubMed ID: 31057876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined Electrochemical Deposition in Sub-15 nm Space for Preparing Nanogap Electrodes.
    Sadar J; Wang Y; Qing Q
    ECS Trans; 2017; 77(7):65-72. PubMed ID: 29503674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum model of space-charge-limited field emission in a nanogap.
    Koh WS; Ang LK
    Nanotechnology; 2008 Jun; 19(23):235402. PubMed ID: 21825791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Promoted Adhesion-Reduced Expansion of Discontinuous Palladium Nanowires upon Hydrogenation.
    Chen H; Wang X; Ma B; Wang H; Chen Y; Jiang C; Huang G; Kou H; Tang T; Luo D
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35844153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.