These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30913757)

  • 1. Tuning of Morphology and Stability of Gold Nanostars Through pH Adjustment.
    Kumar R; Badilescu S; Packirisamy M
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4617-4622. PubMed ID: 30913757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of Gold Nanostars with Melamine for Colorimetric Detection of Uric Acid.
    Dandu SS; Joshi DJ; Park TJ; Kailasa SK
    Appl Spectrosc; 2023 Apr; 77(4):360-370. PubMed ID: 36653320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.
    Ndokoye P; Li X; Zhao Q; Li T; Tade MO; Liu S
    J Colloid Interface Sci; 2016 Jan; 462():341-50. PubMed ID: 26476203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.
    Tyagi H; Kushwaha A; Kumar A; Aslam M
    Nanoscale Res Lett; 2016 Dec; 11(1):362. PubMed ID: 27526178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A plasmonic colorimetric strategy for biosensing through enzyme guided growth of silver nanoparticles on gold nanostars.
    Guo Y; Wu J; Li J; Ju H
    Biosens Bioelectron; 2016 Apr; 78():267-273. PubMed ID: 26623511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seedless gold nanostars with seed-like advantages for biosensing applications.
    Phiri MM; Mulder DW; Vorster BC
    R Soc Open Sci; 2019 Feb; 6(2):181971. PubMed ID: 30891302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization- and wavelength-dependent defocused scattering imaging of single gold nanostars with multiple long branches.
    Kim GW; Ha JW
    Photochem Photobiol Sci; 2019 Jun; 18(6):1430-1435. PubMed ID: 30946416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single gold nanostars with multiple branches as multispectral orientation probes in single-particle rotational tracking.
    Kim GW; Ha JW
    Chem Commun (Camb); 2021 Apr; 57(26):3263-3266. PubMed ID: 33650610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches.
    Meng X; Dyer J; Huo Y; Jiang C
    Langmuir; 2020 Apr; 36(13):3558-3564. PubMed ID: 32176502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand Controlled Morphology Evolution of Active Intermediates for the Syntheses of Gold Nanostars.
    Meng X; Baride A; Jiang C
    Langmuir; 2016 Jul; 32(26):6674-81. PubMed ID: 27291864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of Ag-coated tetrapod gold nanostars and the improvement of surface-enhanced Raman scattering.
    Zhu J; Chen XH; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():154-165. PubMed ID: 30537627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Plasmon Resonances in Silver Nanostars.
    Reyes Gómez F; Rubira RJG; Camacho SA; Martin CS; da Silva RR; Constantino CJL; Alessio P; Oliveira ON; Mejía-Salazar JR
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties.
    Du J; Yu J; Xiong Y; Lin Z; Zhang H; Yang D
    Phys Chem Chem Phys; 2015 Jan; 17(2):1265-72. PubMed ID: 25420730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments.
    Shao L; Susha AS; Cheung LS; Sau TK; Rogach AL; Wang J
    Langmuir; 2012 Jun; 28(24):8979-84. PubMed ID: 22353020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.
    Jia S; Bian C; Sun J; Tong J; Xia S
    Biosens Bioelectron; 2018 Aug; 114():15-21. PubMed ID: 29775854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
    Khoury CG; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2008; 2008(112):18849-18859. PubMed ID: 23977403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning size and sensing properties in colloidal gold nanostars.
    Barbosa S; Agrawal A; Rodríguez-Lorenzo L; Pastoriza-Santos I; Alvarez-Puebla RA; Kornowski A; Weller H; Liz-Marzán LM
    Langmuir; 2010 Sep; 26(18):14943-50. PubMed ID: 20804155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.