These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30913763)
41. Two-bit ferroelectric field-effect transistor memories assembled on individual nanotubes. Fu WY; Xu Z; Liu L; Bai XD; Wang EG Nanotechnology; 2009 Nov; 20(47):475305. PubMed ID: 19875879 [TBL] [Abstract][Full Text] [Related]
42. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Kim KL; Lee W; Hwang SK; Joo SH; Cho SM; Song G; Cho SH; Jeong B; Hwang I; Ahn JH; Yu YJ; Shin TJ; Kwak SK; Kang SJ; Park C Nano Lett; 2016 Jan; 16(1):334-40. PubMed ID: 26618802 [TBL] [Abstract][Full Text] [Related]
43. Ferroelectric-Modulated MoS Xu L; Duan Z; Zhang P; Wang X; Zhang J; Shang L; Jiang K; Li Y; Zhu L; Gong Y; Hu Z; Chu J ACS Appl Mater Interfaces; 2020 Oct; 12(40):44902-44911. PubMed ID: 32931241 [TBL] [Abstract][Full Text] [Related]
45. Using a single electrospun polymer nanofiber to enhance carrier mobility in organic field-effect transistors toward nonvolatile memory. Jian PZ; Chiu YC; Sun HS; Chen TY; Chen WC; Tung SH ACS Appl Mater Interfaces; 2014 Apr; 6(8):5506-15. PubMed ID: 24673527 [TBL] [Abstract][Full Text] [Related]
46. Impact of oxide gate electrode for ferroelectric field-effect transistors with metal-ferroelectric-metal-insulator-semiconductor gate stack using undoped HfO Choi SN; Moon SE; Yoon SM Nanotechnology; 2021 Feb; 32(8):085709. PubMed ID: 33176285 [TBL] [Abstract][Full Text] [Related]
47. Wafer-scale arrays of nonvolatile polymer memories with microprinted semiconducting small molecule/polymer blends. Bae I; Hwang SK; Kim RH; Kang SJ; Park C ACS Appl Mater Interfaces; 2013 Nov; 5(21):10696-704. PubMed ID: 24070419 [TBL] [Abstract][Full Text] [Related]
48. Ferroelectric Devices for Content-Addressable Memory. Tarkov M; Tikhonenko F; Popov V; Antonov V; Miakonkikh A; Rudenko K Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558341 [TBL] [Abstract][Full Text] [Related]
49. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem. Zhao Q; Wang H; Ni Z; Liu J; Zhen Y; Zhang X; Jiang L; Li R; Dong H; Hu W Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28692748 [TBL] [Abstract][Full Text] [Related]
50. Powering Disturb-Free Reconfigurable Computing and Tunable Analog Electronics with Dual-Port Ferroelectric FET. Zhao Z; Deng S; Chatterjee S; Jiang Z; Islam MS; Xiao Y; Xu Y; Meninger S; Mohamed M; Joshi R; Chauhan YS; Mulaosmanovic H; Duenkel S; Kleimaier D; Beyer S; Amrouch H; Narayanan V; Ni K ACS Appl Mater Interfaces; 2023 Nov; 15(47):54602-54610. PubMed ID: 37962420 [TBL] [Abstract][Full Text] [Related]
51. Ferroelectric field-effect transistors for logic and in-situ memory applications. Liu L; Hou X; Zhang H; Wang J; Zhou P Nanotechnology; 2020 Jun; 31(42):424007. PubMed ID: 32599566 [TBL] [Abstract][Full Text] [Related]
52. Single-Walled Carbon Nanotube Dominated Micron-Wide Stripe Patterned-Based Ferroelectric Field-Effect Transistors with HfO Tan Q; Wang Q; Liu Y; Yan H; Cai W; Yang Z Nanoscale Res Lett; 2018 Apr; 13(1):127. PubMed ID: 29700706 [TBL] [Abstract][Full Text] [Related]
53. Ferroelectric Field-Effect Transistors Based on MoS Si M; Liao PY; Qiu G; Duan Y; Ye PD ACS Nano; 2018 Jul; 12(7):6700-6705. PubMed ID: 29944829 [TBL] [Abstract][Full Text] [Related]
54. Ultrafast high-endurance memory based on sliding ferroelectrics. Yasuda K; Zalys-Geller E; Wang X; Bennett D; Cheema SS; Watanabe K; Taniguchi T; Kaxiras E; Jarillo-Herrero P; Ashoori R Science; 2024 Jul; 385(6704):53-56. PubMed ID: 38843354 [TBL] [Abstract][Full Text] [Related]
55. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Kim S; Heo K; Lee S; Seo S; Kim H; Cho J; Lee H; Lee KB; Park JH Nanoscale Horiz; 2021 Feb; 6(2):139-147. PubMed ID: 33367448 [TBL] [Abstract][Full Text] [Related]
56. Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. Liao L; Fan HJ; Yan B; Zhang Z; Chen LL; Li BS; Xing GZ; Shen ZX; Wu T; Sun XW; Wang J; Yu T ACS Nano; 2009 Mar; 3(3):700-6. PubMed ID: 19249845 [TBL] [Abstract][Full Text] [Related]
57. Speed up Ferroelectric Organic Transistor Memories by Using Two-Dimensional Molecular Crystalline Semiconductors. Song L; Wang Y; Gao Q; Guo Y; Wang Q; Qian J; Jiang S; Wu B; Wang X; Shi Y; Zheng Y; Li Y ACS Appl Mater Interfaces; 2017 May; 9(21):18127-18133. PubMed ID: 28493670 [TBL] [Abstract][Full Text] [Related]
58. Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights. Halter M; Bégon-Lours L; Bragaglia V; Sousa M; Offrein BJ; Abel S; Luisier M; Fompeyrine J ACS Appl Mater Interfaces; 2020 Apr; 12(15):17725-17732. PubMed ID: 32192333 [TBL] [Abstract][Full Text] [Related]
59. Performance improvement of Hf Meng W; Xiao DQ; Luo BB; Wu X; Zhu B; Liu WJ; Ding SJ Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36701799 [TBL] [Abstract][Full Text] [Related]
60. Experimental study of threshold voltage shift for Si:HfO Jung T; Shin C Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34098542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]