These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30913792)

  • 1. Characterization of a Ferroelectric-Gated Graphene Memory Device Fabricated on a Flexible Substrate by Transfer Process.
    Khan SA; Jeong HS; Rahman SA; Bae JH; Kim WY
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4803-4806. PubMed ID: 30913792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible graphene-PZT ferroelectric nonvolatile memory.
    Lee W; Kahya O; Toh CT; Ozyilmaz B; Ahn JH
    Nanotechnology; 2013 Nov; 24(47):475202. PubMed ID: 24192319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Retention Performance in Graphene-Ferroelectric Memory Device Through Mitigation of the Surface Roughness of the Ferroelectric Layer.
    Kim WY
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2206-2210. PubMed ID: 30486969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferroelectric polymer-gated graphene memory with high speed conductivity modulation.
    Hwang HJ; Yang JH; Lee YG; Cho C; Kang CG; Kang SC; Park W; Lee BH
    Nanotechnology; 2013 May; 24(17):175202. PubMed ID: 23558367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-ferroelectric hybrid structure for flexible transparent electrodes.
    Ni GX; Zheng Y; Bae S; Tan CY; Kahya O; Wu J; Hong BH; Yao K; Özyilmaz B
    ACS Nano; 2012 May; 6(5):3935-42. PubMed ID: 22524641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications.
    Zhu M; Wu J; Du Z; Tay RY; Li H; Özyilmaz B; Teo EH
    Nanoscale; 2015 Sep; 7(35):14730-7. PubMed ID: 26284783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film.
    Xu T; Xiang L; Xu M; Xie W; Wang W
    Sci Rep; 2017 Aug; 7(1):8890. PubMed ID: 28827595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale arrays of nonvolatile polymer memories with microprinted semiconducting small molecule/polymer blends.
    Bae I; Hwang SK; Kim RH; Kang SJ; Park C
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10696-704. PubMed ID: 24070419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-solution-processed nonvolatile flexible nano-floating gate memory devices.
    Kim C; Song JM; Lee JS; Lee MJ
    Nanotechnology; 2014 Jan; 25(1):014016. PubMed ID: 24334758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Positioned Nanosized Mask for Transparent and Flexible Ferroelectric Polymer Nanodiodes Array.
    Hyun S; Kwon O; Choi C; Vincent Joseph KL; Kim Y; Kim JK
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27074-27080. PubMed ID: 27635787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire.
    Hwang SK; Min SY; Bae I; Cho SM; Kim KL; Lee TW; Park C
    Small; 2014 May; 10(10):1976-84. PubMed ID: 24644019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxide Heteroepitaxy-Based Flexible Ferroelectric Transistor.
    Tsai MF; Jiang J; Shao PW; Lai YH; Chen JW; Ho SZ; Chen YC; Tsai DP; Chu YH
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25882-25890. PubMed ID: 31257841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending Stability of Ferroelectric Gated Graphene Field Effect Transistor for Flexible Electronics.
    Hu G; Shen Y; Shen L; Ma C; Liu M
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-graphene oxide floating gate transistor memory.
    Jang S; Hwang E; Lee JH; Park HS; Cho JH
    Small; 2015 Jan; 11(3):311-8. PubMed ID: 25163911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible, Temperature-Resistant, and Fatigue-Free Ferroelectric Memory Based on Bi(Fe
    Yang C; Han Y; Qian J; Lv P; Lin X; Huang S; Cheng Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12647-12655. PubMed ID: 30874425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.
    Park N; Kang H; Park J; Lee Y; Yun Y; Lee JH; Lee SG; Lee YH; Suh D
    ACS Nano; 2015 Nov; 9(11):10729-36. PubMed ID: 26487348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible organic memory devices with multilayer graphene electrodes.
    Ji Y; Lee S; Cho B; Song S; Lee T
    ACS Nano; 2011 Jul; 5(7):5995-6000. PubMed ID: 21662978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonvolatile Memory Based on Molecular Ferroelectric/Graphene Field Effect Transistor.
    Zafar Z; Zafar A; Wang WH; Liu MY; Ni ZH; You YM
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39187-39193. PubMed ID: 30295018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Performance Top-Gated Graphene Field-Effect Transistor with Excellent Flexibility Enabled by an iCVD Copolymer Gate Dielectric.
    Oh JG; Pak K; Kim CS; Bong JH; Hwang WS; Im SG; Cho BJ
    Small; 2018 Mar; 14(9):. PubMed ID: 29251418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced nondestructive patterning of a thin ferroelectric polymer film with controlled crystals using Ge8Sb2Te11 alloy layer for nonvolatile memory.
    Bae I; Kim RH; Hwang SK; Kang SJ; Park C
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15171-8. PubMed ID: 25127181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.