These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 30913794)
1. Polystyrene Nanoparticles Induce Apoptosis or Necrosis With or Without Epidermal Growth Factor. Phuc LTM; Taniguchi A J Nanosci Nanotechnol; 2019 Aug; 19(8):4812-4817. PubMed ID: 30913794 [TBL] [Abstract][Full Text] [Related]
2. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis. Phuc LTM; Taniguchi A Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179 [TBL] [Abstract][Full Text] [Related]
3. EGF Conjugation Improves Safety and Uptake Efficacy of Titanium Dioxide Nanoparticles. Salama B; Chang CJ; Kanehira K; El-Sherbini ES; El-Sayed G; El-Adl M; Taniguchi A Molecules; 2020 Sep; 25(19):. PubMed ID: 33003324 [TBL] [Abstract][Full Text] [Related]
4. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Canesi L; Ciacci C; Bergami E; Monopoli MP; Dawson KA; Papa S; Canonico B; Corsi I Mar Environ Res; 2015 Oct; 111():34-40. PubMed ID: 26115607 [TBL] [Abstract][Full Text] [Related]
5. Amino-modified nanoplastics at predicted environmental concentrations cause transgenerational toxicity through activating germline EGF signal in Caenorhabditis elegans. Liu H; Tan X; Li X; Wu Y; Lei S; Wang Z Sci Total Environ; 2024 Oct; 947():174766. PubMed ID: 39004367 [TBL] [Abstract][Full Text] [Related]
6. Controlled release of epidermal growth factor (EGF) from EGF-loaded polymeric nanoparticles composed of polystyrene as core and poly(methacrylic acid) as corona in vitro. Park IK; Seo SJ; Akashi M; Akaike T; Cho CS Arch Pharm Res; 2003 Aug; 26(8):649-52. PubMed ID: 12967201 [TBL] [Abstract][Full Text] [Related]
7. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles. Anguissola S; Garry D; Salvati A; O'Brien PJ; Dawson KA PLoS One; 2014; 9(9):e108025. PubMed ID: 25238162 [TBL] [Abstract][Full Text] [Related]
8. Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna. Lin W; Jiang R; Hu S; Xiao X; Wu J; Wei S; Xiong Y; Ouyang G Ecotoxicol Environ Saf; 2019 Sep; 180():509-516. PubMed ID: 31125795 [TBL] [Abstract][Full Text] [Related]
9. Epidermal growth factor competes with EGF receptor inhibitors to induce cell death in EGFR-overexpressing tumor cells. Song JY; Lee SW; Hong JP; Chang SE; Choe H; Choi J Cancer Lett; 2009 Oct; 283(2):135-42. PubMed ID: 19380191 [TBL] [Abstract][Full Text] [Related]
10. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nie JH; Shen Y; Roshdy M; Cheng X; Wang G; Yang X Nanotoxicology; 2021 Sep; 15(7):885-904. PubMed ID: 34087085 [TBL] [Abstract][Full Text] [Related]
11. Induction of protective response to polystyrene nanoparticles associated with dysregulation of intestinal long non-coding RNAs in Caenorhabditis elegans. Zhao Y; Xu R; Chen X; Wang J; Rui Q; Wang D Ecotoxicol Environ Saf; 2021 Apr; 212():111976. PubMed ID: 33517035 [TBL] [Abstract][Full Text] [Related]
12. Fluoride enhances polystyrene nanoparticles cytotoxicity in colonocytes in vitro model. Steckiewicz KP; Adamska A; Narajczyk M; Megiel E; Inkielewicz-Stepniak I Chem Biol Interact; 2022 Nov; 367():110169. PubMed ID: 36165825 [TBL] [Abstract][Full Text] [Related]
13. Induction of EGF-dependent apoptosis by vacuolar-type H(+)-ATPase inhibitors in A431 cells overexpressing the EGF receptor. Yoshimoto Y; Imoto M Exp Cell Res; 2002 Sep; 279(1):118-27. PubMed ID: 12213220 [TBL] [Abstract][Full Text] [Related]
14. Exposure to Polystyrene nanoparticles induces liver damage in rat via induction of oxidative stress and hepatocyte apoptosis. Yasin NAE; El-Naggar ME; Ahmed ZSO; Galal MK; Rashad MM; Youssef AM; Elleithy EMM Environ Toxicol Pharmacol; 2022 Aug; 94():103911. PubMed ID: 35724857 [TBL] [Abstract][Full Text] [Related]
15. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. Xu D; Ma Y; Han X; Chen Y J Hazard Mater; 2021 Sep; 417():126092. PubMed ID: 34015712 [TBL] [Abstract][Full Text] [Related]
16. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664 [TBL] [Abstract][Full Text] [Related]
17. Epidermal growth factor-induced cell death and radiosensitization in epidermal growth factor receptor-overexpressing cancer cell lines. Kim K; Wu HG; Jeon SR Anticancer Res; 2015 Jan; 35(1):245-53. PubMed ID: 25550557 [TBL] [Abstract][Full Text] [Related]
18. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. Wu P; Zhou Q; Zhu H; Zhuang Y; Bao J BMC Cancer; 2020 Apr; 20(1):354. PubMed ID: 32345258 [TBL] [Abstract][Full Text] [Related]
19. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Ruenraroengsak P; Tetley TD Part Fibre Toxicol; 2015 Jul; 12():19. PubMed ID: 26133975 [TBL] [Abstract][Full Text] [Related]
20. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Pitt JA; Kozal JS; Jayasundara N; Massarsky A; Trevisan R; Geitner N; Wiesner M; Levin ED; Di Giulio RT Aquat Toxicol; 2018 Jan; 194():185-194. PubMed ID: 29197232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]