These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
943 related articles for article (PubMed ID: 30914181)
1. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related]
2. [Application of support vector machine in predicting in-hospital mortality risk of patients with acute kidney injury in ICU]. Lin K; Xie JQ; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):239-244. PubMed ID: 29643521 [TBL] [Abstract][Full Text] [Related]
3. Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model. Liu J; Wu J; Liu S; Li M; Hu K; Li K PLoS One; 2021; 16(2):e0246306. PubMed ID: 33539390 [TBL] [Abstract][Full Text] [Related]
4. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
5. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
6. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
7. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
9. Predicting renal function recovery and short-term reversibility among acute kidney injury patients in the ICU: comparison of machine learning methods and conventional regression. Zhao X; Lu Y; Li S; Guo F; Xue H; Jiang L; Wang Z; Zhang C; Xie W; Zhu F Ren Fail; 2022 Dec; 44(1):1326-1337. PubMed ID: 35930309 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis. Pattharanitima P; Thongprayoon C; Kaewput W; Qureshi F; Qureshi F; Petnak T; Srivali N; Gembillo G; O'Corragain OA; Chesdachai S; Vallabhajosyula S; Guru PK; Mao MA; Garovic VD; Dillon JJ; Cheungpasitporn W J Clin Med; 2021 Oct; 10(21):. PubMed ID: 34768540 [TBL] [Abstract][Full Text] [Related]
11. Machine learning for the prediction of acute kidney injury in patients with sepsis. Yue S; Li S; Huang X; Liu J; Hou X; Zhao Y; Niu D; Wang Y; Tan W; Wu J J Transl Med; 2022 May; 20(1):215. PubMed ID: 35562803 [TBL] [Abstract][Full Text] [Related]
12. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury. Neyra JA; Ortiz-Soriano V; Liu LJ; Smith TD; Li X; Xie D; Adams-Huet B; Moe OW; Toto RD; Chen J Am J Kidney Dis; 2023 Jan; 81(1):36-47. PubMed ID: 35868537 [TBL] [Abstract][Full Text] [Related]
14. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
15. The SAPS 3 score as a predictor of hospital mortality in a South African tertiary intensive care unit: A prospective cohort study. van der Merwe E; Kapp J; Pazi S; Aylward R; Van Niekerk M; Mrara B; Freercks R PLoS One; 2020; 15(5):e0233317. PubMed ID: 32437390 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the performance of a model based on administrative data and a model based on clinical data: effect of severity of illness on standardized mortality ratios of intensive care units. Brinkman S; Abu-Hanna A; van der Veen A; de Jonge E; de Keizer NF Crit Care Med; 2012 Feb; 40(2):373-8. PubMed ID: 21983367 [TBL] [Abstract][Full Text] [Related]
17. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study. Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407 [TBL] [Abstract][Full Text] [Related]
18. Prediction Models for AKI in ICU: A Comparative Study. Qian Q; Wu J; Wang J; Sun H; Yang L Int J Gen Med; 2021; 14():623-632. PubMed ID: 33664585 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Approaches for Prediction of Renal Replacement Therapy-Free Survival in Patients with Acute Kidney Injury. Pattharanitima P; Vaid A; Jaladanki SK; Paranjpe I; O'Hagan R; Chauhan K; Van Vleck TT; Duffy A; Chaudhary K; Glicksberg BS; Neyra JA; Coca SG; Chan L; Nadkarni GN Blood Purif; 2021; 50(4-5):621-627. PubMed ID: 33631752 [TBL] [Abstract][Full Text] [Related]
20. Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: a prospective cohort study. Arabi Y; Al Shirawi N; Memish Z; Venkatesh S; Al-Shimemeri A Crit Care; 2003 Oct; 7(5):R116-22. PubMed ID: 12974979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]