BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30914363)

  • 1. Structural basis for substrate binding to human pyridoxal 5'-phosphate phosphatase/chronophin by a conformational change.
    Cho HJ; Lee HJ; Cho HY; Park JW; Lee DS; Lee HS; Kwon OS; Kang BS
    Int J Biol Macromol; 2019 Jun; 131():912-924. PubMed ID: 30914363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronophin dimerization is required for proper positioning of its substrate specificity loop.
    Kestler C; Knobloch G; Tessmer I; Jeanclos E; Schindelin H; Gohla A
    J Biol Chem; 2014 Jan; 289(5):3094-103. PubMed ID: 24338687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary and structural analyses of mammalian haloacid dehalogenase-type phosphatases AUM and chronophin provide insight into the basis of their different substrate specificities.
    Seifried A; Knobloch G; Duraphe PS; Segerer G; Manhard J; Schindelin H; Schultz J; Gohla A
    J Biol Chem; 2014 Feb; 289(6):3416-31. PubMed ID: 24338473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of hydrolysis-resistant pyridoxal 5'-phosphate analogs and their biochemical and X-ray crystallographic characterization with the pyridoxal phosphatase chronophin.
    Knobloch G; Jabari N; Stadlbauer S; Schindelin H; Köhn M; Gohla A
    Bioorg Med Chem; 2015 Jun; 23(12):2819-27. PubMed ID: 25783190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do metabolic HAD phosphatases moonlight as protein phosphatases?
    Gohla A
    Biochim Biophys Acta Mol Cell Res; 2019 Jan; 1866(1):153-166. PubMed ID: 30030002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-bound structures of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis reveal a water channel connecting to the active site for the second step of catalysis.
    Dhindwal S; Priyadarshini P; Patil DN; Tapas S; Kumar P; Tomar S; Kumar P
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):239-55. PubMed ID: 25664734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystal structure of the hypothetical phosphotyrosine phosphatase MDP-1 of the haloacid dehalogenase superfamily.
    Peisach E; Selengut JD; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Oct; 43(40):12770-9. PubMed ID: 15461449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis.
    Miao Y; Tenor JL; Toffaletti DL; Washington EJ; Liu J; Shadrick WR; Schumacher MA; Lee RE; Perfect JR; Brennan RG
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7148-53. PubMed ID: 27307435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cap-domain closure enables diverse substrate recognition by the C2-type haloacid dehalogenase-like sugar phosphatase Plasmodium falciparum HAD1.
    Park J; Guggisberg AM; Odom AR; Tolia NH
    Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1824-34. PubMed ID: 26327372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131.
    Lu Z; Dunaway-Mariano D; Allen KN
    Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of the Chromobacterium violaceumω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP.
    Humble MS; Cassimjee KE; Håkansson M; Kimbung YR; Walse B; Abedi V; Federsel HJ; Berglund P; Logan DT
    FEBS J; 2012 Mar; 279(5):779-92. PubMed ID: 22268978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Escherichia coli tryptophanase.
    Ku SY; Yip P; Howell PL
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):814-23. PubMed ID: 16790938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) .
    Nguyen HH; Wang L; Huang H; Peisach E; Dunaway-Mariano D; Allen KN
    Biochemistry; 2010 Feb; 49(6):1082-92. PubMed ID: 20050614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases.
    Wehenkel A; Bellinzoni M; Schaeffer F; Villarino A; Alzari PM
    J Mol Biol; 2007 Dec; 374(4):890-8. PubMed ID: 17961594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the substrate recognition and reaction specificity of the PLP-dependent fold-type I isoleucine 2-epimerase from Lactobacillus buchneri.
    Awad R; Gans P; Reiser JB
    Biochimie; 2017 Jun; 137():165-173. PubMed ID: 28344038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A trapped human PPM1A-phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity.
    Debnath S; Kosek D; Tagad HD; Durell SR; Appella DH; Acevedo R; Grishaev A; Dyda F; Appella E; Mazur SJ
    J Biol Chem; 2018 May; 293(21):7993-8008. PubMed ID: 29602904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structure and Pyridoxal 5-Phosphate Binding Property of Lysine Decarboxylase from Selenomonas ruminantium.
    Sagong HY; Son HF; Kim S; Kim YH; Kim IK; Kim KJ
    PLoS One; 2016; 11(11):e0166667. PubMed ID: 27861532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the substrate selectivity of a HAD phosphatase from Thermococcus onnurineus NA1.
    Ngo TD; Van Le B; Subramani VK; Thi Nguyen CM; Lee HS; Cho Y; Kim KK; Hwang HY
    Biochem Biophys Res Commun; 2015 May; 461(1):122-7. PubMed ID: 25858319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.