These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30914390)

  • 81. Ultrasmall MoS
    Li P; Liu L; Lu Q; Yang S; Yang L; Cheng Y; Wang Y; Wang S; Song Y; Tan F; Li N
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5771-5781. PubMed ID: 30653297
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells.
    Jin S; Zhou L; Gu Z; Tian G; Yan L; Ren W; Yin W; Liu X; Zhang X; Hu Z; Zhao Y
    Nanoscale; 2013 Dec; 5(23):11910-8. PubMed ID: 24129918
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Photodynamic Action of Single-Walled Carbon Nanotubes.
    Murakami T
    Chem Pharm Bull (Tokyo); 2017; 65(7):629-636. PubMed ID: 28674335
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bovine Serum Albulmin Protein-Templated Silver Nanocluster (BSA-Ag
    Yu Y; Geng J; Ong EY; Chellappan V; Tan YN
    Adv Healthc Mater; 2016 Oct; 5(19):2528-2535. PubMed ID: 27411540
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Nanoparticles in photodynamic therapy: an emerging paradigm.
    Chatterjee DK; Fong LS; Zhang Y
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1627-37. PubMed ID: 18930086
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells.
    Chatterjee DK; Yong Z
    Nanomedicine (Lond); 2008 Feb; 3(1):73-82. PubMed ID: 18393642
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Photodynamic therapy efficacy enhanced by dynamics: the role of charge transfer and photostability in the selection of photosensitizers.
    Arnaut LG; Pereira MM; Dąbrowski JM; Silva EF; Schaberle FA; Abreu AR; Rocha LB; Barsan MM; Urbańska K; Stochel G; Brett CM
    Chemistry; 2014 Apr; 20(18):5346-57. PubMed ID: 24644142
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy.
    Cheng HB; Qiao B; Li H; Cao J; Luo Y; Kotraiah Swamy KM; Zhao J; Wang Z; Lee JY; Liang XJ; Yoon J
    J Am Chem Soc; 2021 Feb; 143(5):2413-2422. PubMed ID: 33507066
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy.
    Lee SJ; Koo H; Jeong H; Huh MS; Choi Y; Jeong SY; Byun Y; Choi K; Kim K; Kwon IC
    J Control Release; 2011 May; 152(1):21-9. PubMed ID: 21457740
    [TBL] [Abstract][Full Text] [Related]  

  • 90. pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy.
    Liu L; Fu L; Jing T; Ruan Z; Yan L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8980-90. PubMed ID: 27020730
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Plasmonic engineering of singlet oxygen generation.
    Zhang Y; Aslan K; Previte MJ; Geddes CD
    Proc Natl Acad Sci U S A; 2008 Feb; 105(6):1798-802. PubMed ID: 18252825
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Bifunctional Platinated Nanoparticles for Photoinduced Tumor Ablation.
    Guo Z; Zou Y; He H; Rao J; Ji S; Cui X; Ke H; Deng Y; Yang H; Chen C; Zhao Y; Chen H
    Adv Mater; 2016 Dec; 28(46):10155-10164. PubMed ID: 27714878
    [TBL] [Abstract][Full Text] [Related]  

  • 93. X-ray induced photodynamic therapy (PDT) with a mitochondria-targeted liposome delivery system.
    Gu X; Shen C; Li H; Goldys EM; Deng W
    J Nanobiotechnology; 2020 Jun; 18(1):87. PubMed ID: 32522291
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Photodynamic therapy in breast cancer treatment.
    Gustalik J; Aebisher D; Bartusik-Aebisher D
    J Appl Biomed; 2022 Oct; 20(3):98-105. PubMed ID: 36218130
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metal-Organic Framework (MOF) Hybrid as a Tandem Catalyst for Enhanced Therapy against Hypoxic Tumor Cells.
    Liu J; Liu T; Du P; Zhang L; Lei J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7808-7812. PubMed ID: 30957318
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Iron oxide nanoparticles conjugated with organic optical probes for
    Sharma S; Lamichhane N; Parul ; Sen T; Roy I
    Nanomedicine (Lond); 2021 May; 16(11):943-962. PubMed ID: 33913338
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Photodynamic therapy in cancer treatment: properties and applications in nanoparticles.
    Younus LA; Mahmoud ZH; Hamza AA; Alaziz KMA; Ali ML; Yasin Y; Jihad WS; Rasheed T; Alkhawaldeh AK; Ali FK; Kianfar E
    Braz J Biol; 2023; 84():e268892. PubMed ID: 37311125
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy.
    Park J; Lee YK; Park IK; Hwang SR
    Biomedicines; 2021 Jan; 9(1):. PubMed ID: 33467201
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats.
    Lee S; Vu DH; Hinds MF; Davis SJ; Liang A; Hasan T
    J Biomed Opt; 2008; 13(6):064035. PubMed ID: 19123681
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Can nanotechnology potentiate photodynamic therapy?
    Huang YY; Sharma SK; Dai T; Chung H; Yaroslavsky A; Garcia-Diaz M; Chang J; Chiang LY; Hamblin MR
    Nanotechnol Rev; 2012 Mar; 1(2):111-146. PubMed ID: 26361572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.