These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30914390)

  • 101. Direct
    Blázquez-Castro A
    Redox Biol; 2017 Oct; 13():39-59. PubMed ID: 28570948
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs.
    Yin R; Agrawal T; Khan U; Gupta GK; Rai V; Huang YY; Hamblin MR
    Nanomedicine (Lond); 2015; 10(15):2379-404. PubMed ID: 26305189
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats.
    Lee S; Vu DH; Hinds MF; Davis SJ; Liang A; Hasan T
    J Biomed Opt; 2008; 13(6):064035. PubMed ID: 19123681
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Applications of functionalized nanomaterials in photodynamic therapy.
    Fakayode OJ; Tsolekile N; Songca SP; Oluwafemi OS
    Biophys Rev; 2018 Feb; 10(1):49-67. PubMed ID: 29294258
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Can nanotechnology potentiate photodynamic therapy?
    Huang YY; Sharma SK; Dai T; Chung H; Yaroslavsky A; Garcia-Diaz M; Chang J; Chiang LY; Hamblin MR
    Nanotechnol Rev; 2012 Mar; 1(2):111-146. PubMed ID: 26361572
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency.
    Wu W; Shao X; Zhao J; Wu M
    Adv Sci (Weinh); 2017 Jul; 4(7):1700113. PubMed ID: 28725533
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Precise Monitoring of Singlet Oxygen in Specific Endocytic Organelles by Super-pH-Resolved Nanosensors.
    Chen B; Yang Y; Wang Y; Yan Y; Wang Z; Yin Q; Zhang Q; Wang Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18533-18544. PubMed ID: 33856773
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence.
    Robbins E; Leroy-Lhez S; Villandier N; Samoć M; Matczyszyn K
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684904
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Surface plasmon-photosensitizer resonance coupling: an enhanced singlet oxygen production platform for broad-spectrum photodynamic inactivation of bacteria.
    Hu B; Cao X; Nahan K; Caruso J; Tang H; Zhang P
    J Mater Chem B; 2014 Oct; 2(40):7073-7081. PubMed ID: 32262117
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Semiconductor quantum dots for photodynamic therapy: Recent advances.
    Uprety B; Abrahamse H
    Front Chem; 2022; 10():946574. PubMed ID: 36034651
    [TBL] [Abstract][Full Text] [Related]  

  • 111. A Singlet Oxygen Generating Agent by Chirality-dependent Plasmonic Shell-Satellite Nanoassembly.
    Gao F; Sun M; Ma W; Wu X; Liu L; Kuang H; Xu C
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28230915
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters.
    Morgan NY; Kramer-Marek G; Smith PD; Camphausen K; Capala J
    Radiat Res; 2009 Feb; 171(2):236-44. PubMed ID: 19267550
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Toward a 3D cellular model for studying in vitro the outcome of photodynamic treatments: accounting for the effects of tissue complexity.
    Alemany-Ribes M; García-Díaz M; Busom M; Nonell S; Semino CE
    Tissue Eng Part A; 2013 Aug; 19(15-16):1665-74. PubMed ID: 23442191
    [TBL] [Abstract][Full Text] [Related]  

  • 114. 3,6,13,16-Tetrapropylporphycene: Rational Synthesis, Complexation, and Halogenation.
    Nagamaiah J; Dutta A; Pati NN; Sahoo S; Soman R; Panda PK
    J Org Chem; 2022 Mar; 87(5):2721-2729. PubMed ID: 35061396
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Pectin-Coated Plasmonic Nanoparticles for Photodynamic Therapy: Inspecting the Role of Serum Proteins.
    Cisneros JS; Chain CY; Rivas Aiello MB; Parisi J; Castrogiovanni DC; Bosio GN; Mártire DO; Vela ME
    ACS Omega; 2021 May; 6(19):12567-12576. PubMed ID: 34056407
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Recent advances in noble metal complex based photodynamic therapy.
    Wu Y; Li S; Chen Y; He W; Guo Z
    Chem Sci; 2022 May; 13(18):5085-5106. PubMed ID: 35655575
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Investigating the reactive oxygen species production of Rose Bengal and Merocyanine 540-loaded radioluminescent nanoparticles.
    Nsubuga A; Mandl GA; Capobianco JA
    Nanoscale Adv; 2021 Mar; 3(5):1375-1381. PubMed ID: 36132856
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Singlet Oxygen In Vivo: It Is All about Intensity.
    Hackbarth S; Islam R; Šubr V; Etrych T; Fang J
    J Pers Med; 2022 May; 12(6):. PubMed ID: 35743675
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School.
    Hamblin MR; Chiang LY; Lakshmanan S; Huang YY; Garcia-Diaz M; Karimi M; de Souza Rastelli AN; Chandran R
    Nanotechnol Rev; 2015 Aug; 4(4):359-372. PubMed ID: 26640747
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Enhanced visible light promoted antibacterial efficiency of conjugated microporous polymer nanoparticles via molecular doping.
    Ma BC; Ghasimi S; Landfester K; Zhang KAI
    J Mater Chem B; 2016 Aug; 4(30):5112-5118. PubMed ID: 32263508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.