These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30915391)

  • 1. Comment on "Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations".
    Gehring PM; Xu Z; Stock C; Xu G; Parshall D; Harriger L; Gehring CA; Li X; Luo H
    Sci Adv; 2019 Mar; 5(3):eaar5066. PubMed ID: 30915391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations.
    Manley ME; Abernathy DL; Sahul R; Parshall DE; Lynn JW; Christianson AD; Stonaha PJ; Specht ED; Budai JD
    Sci Adv; 2016 Sep; 2(9):e1501814. PubMed ID: 27652338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to comment on "Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations".
    Manley ME; Abernathy DL; Christianson AD; Lynn JW
    Sci Adv; 2019 Mar; 5(3):eaaw4367. PubMed ID: 30915399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase instability induced by polar nanoregions in a relaxor ferroelectric system.
    Xu G; Wen J; Stock C; Gehring PM
    Nat Mater; 2008 Jul; 7(7):562-6. PubMed ID: 18469821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft mode dynamics above and below the Burns temperature in the relaxor Pb(Mg1/3Nb2/3)O3.
    Gehring PM; Wakimoto S; Ye ZG; Shirane G
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):277601. PubMed ID: 11800914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon localization drives polar nanoregions in a relaxor ferroelectric.
    Manley ME; Lynn JW; Abernathy DL; Specht ED; Delaire O; Bishop AR; Sahul R; Budai JD
    Nat Commun; 2014 Apr; 5():3683. PubMed ID: 24718289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics.
    Liu H; Shi X; Yao Y; Luo H; Li Q; Huang H; Qi H; Zhang Y; Ren Y; Kelly SD; Roleder K; Neuefeind JC; Chen LQ; Xing X; Chen J
    Nat Commun; 2023 Feb; 14(1):1007. PubMed ID: 36823219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis.
    Jeong IK; Darling TW; Lee JK; Proffen T; Heffner RH; Park JS; Hong KS; Dmowski W; Egami T
    Phys Rev Lett; 2005 Apr; 94(14):147602. PubMed ID: 15904113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectrics.
    Roth M; Mojaev E; Dul'kin E; Gemeiner P; Dkhil B
    Phys Rev Lett; 2007 Jun; 98(26):265701. PubMed ID: 17678104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of polar nanoregions with weak random fields in Pb-based perovskite ferroelectrics.
    Helal MA; Aftabuzzaman M; Tsukada S; Kojima S
    Sci Rep; 2017 Mar; 7():44448. PubMed ID: 28300152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics.
    Kumar A; Baker JN; Bowes PC; Cabral MJ; Zhang S; Dickey EC; Irving DL; LeBeau JM
    Nat Mater; 2021 Jan; 20(1):62-67. PubMed ID: 32895506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic and anelastic relaxations in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: I. Strain analysis and a static order parameter.
    Carpenter MA; Bryson JF; Catalan G; Howard CJ
    J Phys Condens Matter; 2012 Feb; 24(4):045901. PubMed ID: 22185960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalies of Brillouin Light Scattering in Selected Perovskite Relaxor Ferroelectric Crystals.
    Sivasubramanian V; Ganesamoorthy S; Kojima S
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slush-like polar structures in single-crystal relaxors.
    Takenaka H; Grinberg I; Liu S; Rappe AM
    Nature; 2017 Jun; 546(7658):391-395. PubMed ID: 28617453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local lattice dynamics and the origin of the relaxor ferroelectric behavior.
    Dmowski W; Vakhrushev SB; Jeong IK; Hehlen MP; Trouw F; Egami T
    Phys Rev Lett; 2008 Apr; 100(13):137602. PubMed ID: 18517997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Monoclinic Heterophase Coexistence for the Enhanced Piezoelectric Performance in Ternary Lead-Based Relaxor Ferroelectrics.
    Cui A; Ye Y; Dai K; Li Y; Zhu L; Jiang K; Shang L; Xu G; Hu Z; Zhang S; Chu J
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10535-10545. PubMed ID: 35175024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of the "waterfall" effect in phonon dispersion of relaxor perovskites.
    Hlinka J; Kamba S; Petzelt J; Kulda J; Randall CA; Zhang SJ
    Phys Rev Lett; 2003 Sep; 91(10):107602. PubMed ID: 14525505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric.
    Eremenko M; Krayzman V; Bosak A; Playford HY; Chapman KW; Woicik JC; Ravel B; Levin I
    Nat Commun; 2019 Jun; 10(1):2728. PubMed ID: 31227698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.
    Li F; Zhang S; Yang T; Xu Z; Zhang N; Liu G; Wang J; Wang J; Cheng Z; Ye ZG; Luo J; Shrout TR; Chen LQ
    Nat Commun; 2016 Dec; 7():13807. PubMed ID: 27991504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical-Induced Polarization Switching in Relaxor Ferroelectric Single Crystals.
    Bian J; Wang Y; Zhu R; Wang L; Yang B; Wang J; Zhang D; Xu C; Li T; Viehland D; Yang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40758-40768. PubMed ID: 31592632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.