These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30915394)

  • 1. Plasmon damping depends on the chemical nature of the nanoparticle interface.
    Foerster B; Spata VA; Carter EA; Sönnichsen C; Link S
    Sci Adv; 2019 Mar; 5(3):eaav0704. PubMed ID: 30915394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY; Tsalu PV; Kim GW; Seo MJ; Hong JW; Ha JW
    Nano Lett; 2019 Apr; 19(4):2568-2574. PubMed ID: 30856334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandwidth of quantized surface plasmons: competition between radiative and nonradiative damping effects.
    Moustafa S; Zayed MK; Ahmed M; Fares H
    Phys Chem Chem Phys; 2024 Jan; 26(3):1994-2006. PubMed ID: 38116761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersive Plasmon Damping in Single Gold Nanorods by Platinum Adsorbates.
    Xu P; Lu X; Han S; Ou W; Li Y; Chen S; Xue J; Ding Y; Ni W
    Small; 2016 Sep; 12(36):5081-5089. PubMed ID: 27159087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-driven oxidative coupling of aniline-derivative adsorbates: A comparative study of para-ethynylaniline and para-mercaptoaniline.
    Chen K; Wang H
    J Chem Phys; 2022 May; 156(20):204705. PubMed ID: 35649839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drastic reduction of plasmon damping in gold nanorods.
    Sönnichsen C; Franzl T; Wilk T; von Plessen G; Feldmann J; Wilson O; Mulvaney P
    Phys Rev Lett; 2002 Feb; 88(7):077402. PubMed ID: 11863939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Hong YA; Ha JW
    Analyst; 2023 Aug; 148(16):3719-3723. PubMed ID: 37458613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.
    Hu M; Novo C; Funston A; Wang H; Staleva H; Zou S; Mulvaney P; Xia Y; Hartland GV
    J Mater Chem; 2008; 18(17):1949-1960. PubMed ID: 18846243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects.
    Kolwas K
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon Energy Transfer Driven by Electrochemical Tuning of Methylene Blue on Single Gold Nanorods.
    Oh H; Searles EK; Chatterjee S; Jia Z; Lee SA; Link S; Landes CF
    ACS Nano; 2023 Sep; 17(18):18280-18289. PubMed ID: 37672688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.