These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30915394)

  • 21. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding.
    Bosbach J; Hendrich C; Stietz F; Vartanyan T; Träger F
    Phys Rev Lett; 2002 Dec; 89(25):257404. PubMed ID: 12484918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory.
    Fedorov AS; Krasnov PO; Visotin MA; Tomilin FN; Polyutov SP; Ågren H
    J Chem Phys; 2019 Dec; 151(24):244125. PubMed ID: 31893913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.
    Bayan S; Gogurla N; Midya A; Singha A; Ray SK
    Nanotechnology; 2017 Dec; 28(48):485204. PubMed ID: 29048328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach.
    Pustovit VN; Shahbazyan TV
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1369-74. PubMed ID: 16715155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods.
    Lee SA; Ostovar B; Landes CF; Link S
    J Chem Phys; 2022 Feb; 156(6):064702. PubMed ID: 35168347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Particle Plasmon Voltammetry (spPV) for Detecting Anion Adsorption.
    Byers CP; Hoener BS; Chang WS; Link S; Landes CF
    Nano Lett; 2016 Apr; 16(4):2314-21. PubMed ID: 27006995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlocal Optical Response of Particle Plasmons in Single Gold Nanorods.
    Ye W
    Nano Lett; 2023 Aug; 23(16):7658-7664. PubMed ID: 37539992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution.
    Dondapati SK; Ludemann M; Müller R; Schwieger S; Schwemer A; Händel B; Kwiatkowski D; Djiango M; Runge E; Klar TA
    Nano Lett; 2012 Mar; 12(3):1247-52. PubMed ID: 22313237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon modes in graphene: status and prospect.
    Politano A; Chiarello G
    Nanoscale; 2014 Oct; 6(19):10927-40. PubMed ID: 25130215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations.
    Weissker HC; López-Lozano X
    Phys Chem Chem Phys; 2015 Nov; 17(42):28379-86. PubMed ID: 26104995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.
    Foerster B; Hartelt M; Collins SSE; Aeschlimann M; Link S; Sönnichsen C
    Nano Lett; 2020 May; 20(5):3338-3343. PubMed ID: 32216365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles.
    Baida H; Billaud P; Marhaba S; Christofilos D; Cottancin E; Crut A; Lermé J; Maioli P; Pellarin M; Broyer M; Del Fatti N; Vallée F; Sánchez-Iglesias A; Pastoriza-Santos I; Liz-Marzán LM
    Nano Lett; 2009 Oct; 9(10):3463-9. PubMed ID: 19719148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.