BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30915709)

  • 1. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.
    Miljković F; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome.
    Miljković F; Bajorath J
    Future Sci OA; 2019 Jul; 5(7):FSO404. PubMed ID: 31428450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic assessment of structure-promiscuity relationships between different types of kinase inhibitors.
    Hu H; Bajorath J
    Bioorg Med Chem; 2021 Jul; 41():116226. PubMed ID: 34082305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Biological Activities to Different Types of Molecular Scaffolds: Exemplary Application to Protein Kinase Inhibitors.
    Dimova D; Bajorath J
    Methods Mol Biol; 2018; 1825():327-337. PubMed ID: 30334211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationalizing Promiscuity Cliffs.
    Dimova D; Bajorath J
    ChemMedChem; 2018 Mar; 13(6):490-494. PubMed ID: 29024534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promiscuity analysis of a kinase panel screen with designated p38 alpha inhibitors.
    González-Medina M; Miljković F; Haase GS; Drueckes P; Trappe J; Laufer S; Bajorath J
    Eur J Med Chem; 2020 Feb; 187():112004. PubMed ID: 31881458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
    Gao Y; Davies SP; Augustin M; Woodward A; Patel UA; Kovelman R; Harvey KJ
    Biochem J; 2013 Apr; 451(2):313-28. PubMed ID: 23398362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of inhibitors and activity data to the human kinome and exploring promiscuity from a ligand and target perspective.
    Hu Y; Kunimoto R; Bajorath J
    Chem Biol Drug Des; 2017 Jun; 89(6):834-845. PubMed ID: 27933727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing Promiscuity at the Level of Active Compounds and Targets.
    Bajorath J
    Mol Inform; 2016 Dec; 35(11-12):583-587. PubMed ID: 27870240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic assessment of coordinated activity cliffs formed by kinase inhibitors and detailed characterization of activity cliff clusters and associated SAR information.
    Dimova D; Stumpfe D; Bajorath J
    Eur J Med Chem; 2015 Jan; 90():414-27. PubMed ID: 25461890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying representative kinases for inhibitor evaluation via systematic analysis of compound-based target relationships.
    Laufkötter O; Laufer S; Bajorath J
    Eur J Med Chem; 2020 Oct; 204():112641. PubMed ID: 32745818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Data-Driven Assessment of Non-Kinase Targets of Inhibitors of the Human Kinome.
    Mobasher M; Vogt M; Xerxa E; Bajorath J
    Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation.
    Li X; Li Z; Wu X; Xiong Z; Yang T; Fu Z; Liu X; Tan X; Zhong F; Wan X; Wang D; Ding X; Yang R; Hou H; Li C; Liu H; Chen K; Jiang H; Zheng M
    J Med Chem; 2020 Aug; 63(16):8723-8737. PubMed ID: 31364850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs.
    Dimova D; Stumpfe D; Bajorath J
    J Med Chem; 2014 Aug; 57(15):6553-63. PubMed ID: 25014781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity.
    Dimova D; Hu Y; Bajorath J
    J Med Chem; 2012 Nov; 55(22):10220-8. PubMed ID: 23050678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure.
    Park H; Chi O; Kim J; Hong S
    J Chem Inf Model; 2011 Nov; 51(11):2986-93. PubMed ID: 22017333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.