BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 30915735)

  • 1. TUG1 promotes the development of prostate cancer by regulating RLIM.
    Guo BH; Zhao Q; Li HY
    Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1926-1933. PubMed ID: 30915735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LncRNA TUG1 aggravates the progression of prostate cancer and predicts the poor prognosis.
    Xu T; Liu CL; Li T; Zhang YH; Zhao YH
    Eur Rev Med Pharmacol Sci; 2019 Jun; 23(11):4698-4705. PubMed ID: 31210308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway.
    Zhao B; Lu YL; Yang Y; Hu LB; Bai Y; Li RQ; Zhang GY; Li J; Bi CW; Yang LB; Hu C; Lei YH; Wang QL; Liu ZM
    Cancer Biomark; 2018 Feb; 21(3):613-620. PubMed ID: 29278879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TUG1 knockdown inhibits the tumorigenesis and progression of prostate cancer by regulating microRNA-496/Wnt/β-catenin pathway.
    Li G; Yang J; Chong T; Huang Y; Liu Y; Li H
    Anticancer Drugs; 2020 Jul; 31(6):592-600. PubMed ID: 32427740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long non-coding RNA LINP1 promotes the malignant progression of prostate cancer by regulating p53.
    Wu HF; Ren LG; Xiao JQ; Zhang Y; Mao XW; Zhou LF
    Eur Rev Med Pharmacol Sci; 2018 Jul; 22(14):4467-4476. PubMed ID: 30058678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of long non-coding RNA PlncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer.
    Jin Y; Cui Z; Li X; Jin X; Peng J
    Oncotarget; 2017 Apr; 8(16):26090-26099. PubMed ID: 28212533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis.
    Yang G; Yin H; Lin F; Gao S; Zhan K; Tong H; Tang X; Pan Q; Gou X
    Pathol Res Pract; 2020 Apr; 216(4):152851. PubMed ID: 32057513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long non-coding TUG1 accelerates prostate cancer progression through regulating miR-128-3p/YES1 axis.
    Hao SD; Ma JX; Liu Y; Liu PJ; Qin Y
    Eur Rev Med Pharmacol Sci; 2020 Jan; 24(2):619-632. PubMed ID: 32016963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway.
    Qin CF; Zhao FL
    Eur Rev Med Pharmacol Sci; 2017 May; 21(10):2377-2384. PubMed ID: 28617552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a.
    Yang B; Tang X; Wang Z; Sun D; Wei X; Ding Y
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 29967294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of LncRNA ROR promoting prostate cancer by regulating Akt.
    Zhai XQ; Meng FM; Hu SF; Sun P; Xu W
    Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1969-1977. PubMed ID: 30915739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low expression of TUG1 promotes cisplatin sensitivity in cervical cancer by activating the MAPK pathway.
    Wei X; Zhou Y; Qiu J; Wang X; Xia Y; Sui L
    J BUON; 2019; 24(3):1020-1026. PubMed ID: 31424656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-1269a promotes the occurrence and progression of osteosarcoma by inhibit-ing TGF-β1 expression.
    Yu SN; Miao YY; Zhang BT; Dai YM; Liu L; Gao ZL; Liu GF
    Eur Rev Med Pharmacol Sci; 2019 Feb; 23(3):972-981. PubMed ID: 30779063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway.
    Yan HY; Bu SZ; Zhou WB; Mai YF
    Eur Rev Med Pharmacol Sci; 2018 Oct; 22(20):6922-6929. PubMed ID: 30402858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the plasma level of long non-coding RNA PCAT1 in prostatic hyperplasia and newly diagnosed prostate cancer patients.
    Rezatabar S; Moudi E; Sadeghi F; Khafri S; Kopi TA; Parsian H
    J Gene Med; 2020 Oct; 22(10):e3239. PubMed ID: 32529802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exosomal lncAY927529 enhances prostate cancer cell proliferation and invasion through regulating bone microenvironment.
    Li Q; Hu J; Shi Y; Xiao M; Bi T; Wang C; Yan L; Li X
    Cell Cycle; 2021 Dec; 20(23):2531-2546. PubMed ID: 34724861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of protein kinase, DNA-activated, catalytic polypeptide attenuates tumor progression and is an independent prognostic predictor of survival in prostate cancer.
    Zhang X; Wang Y; Ning Y
    Urol Oncol; 2017 Mar; 35(3):111.e15-111.e23. PubMed ID: 27856181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long non-‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer.
    Weng W; Liu C; Li G; Ruan Q; Li H; Lin N; Chen G
    Mol Med Rep; 2021 Dec; 24(6):. PubMed ID: 34643247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LINC01146/F11R facilitates growth and metastasis of prostate cancer under the regulation of TGF-β.
    Guo X; Gu Y; Guo C; Pei L; Hao C
    J Steroid Biochem Mol Biol; 2023 Jan; 225():106193. PubMed ID: 36162632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long non-coding RNA VIM-AS1 promotes prostate cancer growth and invasion by regulating epithelial-mesenchymal transition.
    Zhang Y; Zhang J; Liang S; Lang G; Liu G; Liu P; Deng X
    J BUON; 2019; 24(5):2090-2098. PubMed ID: 31786880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.