These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 30915735)
1. TUG1 promotes the development of prostate cancer by regulating RLIM. Guo BH; Zhao Q; Li HY Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1926-1933. PubMed ID: 30915735 [TBL] [Abstract][Full Text] [Related]
2. LncRNA TUG1 aggravates the progression of prostate cancer and predicts the poor prognosis. Xu T; Liu CL; Li T; Zhang YH; Zhao YH Eur Rev Med Pharmacol Sci; 2019 Jun; 23(11):4698-4705. PubMed ID: 31210308 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway. Zhao B; Lu YL; Yang Y; Hu LB; Bai Y; Li RQ; Zhang GY; Li J; Bi CW; Yang LB; Hu C; Lei YH; Wang QL; Liu ZM Cancer Biomark; 2018 Feb; 21(3):613-620. PubMed ID: 29278879 [TBL] [Abstract][Full Text] [Related]
4. TUG1 knockdown inhibits the tumorigenesis and progression of prostate cancer by regulating microRNA-496/Wnt/β-catenin pathway. Li G; Yang J; Chong T; Huang Y; Liu Y; Li H Anticancer Drugs; 2020 Jul; 31(6):592-600. PubMed ID: 32427740 [TBL] [Abstract][Full Text] [Related]
5. Long non-coding RNA LINP1 promotes the malignant progression of prostate cancer by regulating p53. Wu HF; Ren LG; Xiao JQ; Zhang Y; Mao XW; Zhou LF Eur Rev Med Pharmacol Sci; 2018 Jul; 22(14):4467-4476. PubMed ID: 30058678 [TBL] [Abstract][Full Text] [Related]
6. Upregulation of long non-coding RNA PlncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer. Jin Y; Cui Z; Li X; Jin X; Peng J Oncotarget; 2017 Apr; 8(16):26090-26099. PubMed ID: 28212533 [TBL] [Abstract][Full Text] [Related]
7. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis. Yang G; Yin H; Lin F; Gao S; Zhan K; Tong H; Tang X; Pan Q; Gou X Pathol Res Pract; 2020 Apr; 216(4):152851. PubMed ID: 32057513 [TBL] [Abstract][Full Text] [Related]
8. Long non-coding TUG1 accelerates prostate cancer progression through regulating miR-128-3p/YES1 axis. Hao SD; Ma JX; Liu Y; Liu PJ; Qin Y Eur Rev Med Pharmacol Sci; 2020 Jan; 24(2):619-632. PubMed ID: 32016963 [TBL] [Abstract][Full Text] [Related]
9. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway. Qin CF; Zhao FL Eur Rev Med Pharmacol Sci; 2017 May; 21(10):2377-2384. PubMed ID: 28617552 [TBL] [Abstract][Full Text] [Related]
10. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Yang B; Tang X; Wang Z; Sun D; Wei X; Ding Y Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 29967294 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of LncRNA ROR promoting prostate cancer by regulating Akt. Zhai XQ; Meng FM; Hu SF; Sun P; Xu W Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1969-1977. PubMed ID: 30915739 [TBL] [Abstract][Full Text] [Related]
12. Low expression of TUG1 promotes cisplatin sensitivity in cervical cancer by activating the MAPK pathway. Wei X; Zhou Y; Qiu J; Wang X; Xia Y; Sui L J BUON; 2019; 24(3):1020-1026. PubMed ID: 31424656 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA-1269a promotes the occurrence and progression of osteosarcoma by inhibit-ing TGF-β1 expression. Yu SN; Miao YY; Zhang BT; Dai YM; Liu L; Gao ZL; Liu GF Eur Rev Med Pharmacol Sci; 2019 Feb; 23(3):972-981. PubMed ID: 30779063 [TBL] [Abstract][Full Text] [Related]
14. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Yan HY; Bu SZ; Zhou WB; Mai YF Eur Rev Med Pharmacol Sci; 2018 Oct; 22(20):6922-6929. PubMed ID: 30402858 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the plasma level of long non-coding RNA PCAT1 in prostatic hyperplasia and newly diagnosed prostate cancer patients. Rezatabar S; Moudi E; Sadeghi F; Khafri S; Kopi TA; Parsian H J Gene Med; 2020 Oct; 22(10):e3239. PubMed ID: 32529802 [TBL] [Abstract][Full Text] [Related]
16. Exosomal lncAY927529 enhances prostate cancer cell proliferation and invasion through regulating bone microenvironment. Li Q; Hu J; Shi Y; Xiao M; Bi T; Wang C; Yan L; Li X Cell Cycle; 2021 Dec; 20(23):2531-2546. PubMed ID: 34724861 [TBL] [Abstract][Full Text] [Related]
17. Down-regulation of protein kinase, DNA-activated, catalytic polypeptide attenuates tumor progression and is an independent prognostic predictor of survival in prostate cancer. Zhang X; Wang Y; Ning Y Urol Oncol; 2017 Mar; 35(3):111.e15-111.e23. PubMed ID: 27856181 [TBL] [Abstract][Full Text] [Related]
18. Long non-‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Weng W; Liu C; Li G; Ruan Q; Li H; Lin N; Chen G Mol Med Rep; 2021 Dec; 24(6):. PubMed ID: 34643247 [TBL] [Abstract][Full Text] [Related]
19. LINC01146/F11R facilitates growth and metastasis of prostate cancer under the regulation of TGF-β. Guo X; Gu Y; Guo C; Pei L; Hao C J Steroid Biochem Mol Biol; 2023 Jan; 225():106193. PubMed ID: 36162632 [TBL] [Abstract][Full Text] [Related]
20. Long non-coding RNA VIM-AS1 promotes prostate cancer growth and invasion by regulating epithelial-mesenchymal transition. Zhang Y; Zhang J; Liang S; Lang G; Liu G; Liu P; Deng X J BUON; 2019; 24(5):2090-2098. PubMed ID: 31786880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]