These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Subzero temperature chromatography and top-down mass spectrometry for protein higher-order structure characterization: method validation and application to therapeutic antibodies. Pan J; Zhang S; Parker CE; Borchers CH J Am Chem Soc; 2014 Sep; 136(37):13065-71. PubMed ID: 25152011 [TBL] [Abstract][Full Text] [Related]
24. Characterization of protein higher order structure using vibrational circular dichroism spectroscopy. Nagarkar RP; Murphy BM; Yu X; Manning MC; Al-Azzam WA Curr Pharm Biotechnol; 2013; 14(2):199-208. PubMed ID: 23167760 [TBL] [Abstract][Full Text] [Related]
25. Native peptide mapping - A simple method to routinely monitor higher order structure changes and relation to functional activity. Degueldre M; Wielant A; Girot E; Burkitt W; O'Hara J; Debauve G; Gervais A; Jone C MAbs; 2019; 11(8):1391-1401. PubMed ID: 31223055 [TBL] [Abstract][Full Text] [Related]
26. High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance. Bronsema KJ; Bischoff R; van de Merbel NC Anal Chem; 2013 Oct; 85(20):9528-35. PubMed ID: 24010948 [TBL] [Abstract][Full Text] [Related]
27. Characterizing protein structure in amorphous solids using hydrogen/deuterium exchange with mass spectrometry. Li Y; Williams TD; Schowen RL; Topp EM Anal Biochem; 2007 Jul; 366(1):18-28. PubMed ID: 17490599 [TBL] [Abstract][Full Text] [Related]
28. Monoclonal antibody higher order structure analysis by high throughput protein conformational array. Song Y; Yu D; Mayani M; Mussa N; Li ZJ MAbs; 2018 Apr; 10(3):397-405. PubMed ID: 29313446 [TBL] [Abstract][Full Text] [Related]
29. Technical decision-making with higher order structure data: starting a new dialogue. Gabrielson JP; Weiss WF J Pharm Sci; 2015 Apr; 104(4):1240-5. PubMed ID: 25711138 [TBL] [Abstract][Full Text] [Related]
30. Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. Smith DL; Deng Y; Zhang Z J Mass Spectrom; 1997 Feb; 32(2):135-46. PubMed ID: 9102198 [TBL] [Abstract][Full Text] [Related]
31. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Güler G; Vorob'ev MM; Vogel V; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():8-18. PubMed ID: 26926394 [TBL] [Abstract][Full Text] [Related]
32. Technical decision making with higher order structure data: impact of a formulation change on the higher order structure and stability of a mAb. Gruia F; Du J; Santacroce PV; Remmele RL; Bee JS J Pharm Sci; 2015 Apr; 104(4):1539-42. PubMed ID: 25270279 [TBL] [Abstract][Full Text] [Related]
33. Understanding the Increased Aggregation Propensity of a Light-Exposed IgG1 Monoclonal Antibody Using Hydrogen Exchange Mass Spectrometry, Biophysical Characterization, and Structural Analysis. Bommana R; Chai Q; Schöneich C; Weiss WF; Majumdar R J Pharm Sci; 2018 Jun; 107(6):1498-1511. PubMed ID: 29408480 [TBL] [Abstract][Full Text] [Related]
34. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
35. Assessing the Utility of Circular Dichroism and FTIR Spectroscopy in Monoclonal-Antibody Comparability Studies. Lin JC; Glover ZK; Sreedhara A J Pharm Sci; 2015 Dec; 104(12):4459-4466. PubMed ID: 26505267 [TBL] [Abstract][Full Text] [Related]
36. Analysis of the structural organization and thermal stability of two spermadhesins. Calorimetric, circular dichroic and Fourier-transform infrared spectroscopic studies. Menéndez M; Gasset M; Laynez J; López-Zumel C; Usobiaga P; Töpfer-Petersen E; Calvete JJ Eur J Biochem; 1995 Dec; 234(3):887-96. PubMed ID: 8575449 [TBL] [Abstract][Full Text] [Related]
37. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Schopper S; Kahraman A; Leuenberger P; Feng Y; Piazza I; Müller O; Boersema PJ; Picotti P Nat Protoc; 2017 Nov; 12(11):2391-2410. PubMed ID: 29072706 [TBL] [Abstract][Full Text] [Related]
38. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry. Ponniah G; Nowak C; Kita A; Cheng G; Kori Y; Liu H Anal Biochem; 2016 Mar; 497():1-7. PubMed ID: 26747642 [TBL] [Abstract][Full Text] [Related]
39. Protein interactions leading to conformational changes monitored by limited proteolysis: apo form and fragments of horse cytochrome c. Spolaore B; Bermejo R; Zambonin M; Fontana A Biochemistry; 2001 Aug; 40(32):9460-8. PubMed ID: 11583145 [TBL] [Abstract][Full Text] [Related]
40. Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. Hamuro Y; Coales SJ; Southern MR; Nemeth-Cawley JF; Stranz DD; Griffin PR J Biomol Tech; 2003 Sep; 14(3):171-82. PubMed ID: 13678147 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]