These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30916053)

  • 1. Deformation induced new pathways in silicon.
    Zhang Z; Cui J; Chang K; Liu D; Chen G; Jiang N; Guo D
    Nanoscale; 2019 May; 11(20):9862-9868. PubMed ID: 30916053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The damage mechanism in copper studied using
    Wang D; Zhang Z; Liu D; Deng X; Shi C; Gu Y; Liu X; Liu X; Wen W
    Nanoscale Adv; 2024 Apr; 6(8):2002-2012. PubMed ID: 38633054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Deformation-Induced Nanostructure in Silicon.
    Wang B; Zhang Z; Chang K; Cui J; Rosenkranz A; Yu J; Lin CT; Chen G; Zang K; Luo J; Jiang N; Guo D
    Nano Lett; 2018 Jul; 18(7):4611-4617. PubMed ID: 29911386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires.
    Cheng G; Zhang Y; Chang TH; Liu Q; Chen L; Lu WD; Zhu T; Zhu Y
    Nano Lett; 2019 Aug; 19(8):5327-5334. PubMed ID: 31314538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in situ TEM nanoindentation-induced new nanostructure in cadmium zinc telluride.
    Liu D; Zhang Z; Chen L; Wang D; Cui J; Chang K; Guo D
    Nanoscale; 2021 Apr; 13(15):7169-7175. PubMed ID: 33889908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ nanoindentation specimen holder for a high voltage transmission electron microscope.
    Wall MA; Dahmen U
    Microsc Res Tech; 1998 Aug; 42(4):248-54. PubMed ID: 9779829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system.
    Hu ZJ; Yan YD; Zhao XS; Gao DW; Wei YY; Wang JH
    Rev Sci Instrum; 2011 Dec; 82(12):125102. PubMed ID: 22225244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh Recovery of Fracture Strength on Mismatched Fractured Amorphous Surfaces of Silicon Carbide.
    Cui J; Zhang Z; Jiang H; Liu D; Zou L; Guo X; Lu Y; Parkin IP; Guo D
    ACS Nano; 2019 Jul; 13(7):7483-7492. PubMed ID: 31184133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.
    Chiu CH; Huang CW; Chen JY; Huang YT; Hu JC; Chen LT; Hsin CL; Wu WW
    Nanoscale; 2013 Jun; 5(11):5086-92. PubMed ID: 23640615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.
    Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C
    Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope.
    Wheeler JM; Michler J
    Rev Sci Instrum; 2013 Apr; 84(4):045103. PubMed ID: 23635228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of shear-driven amorphization in silicon crystals.
    He Y; Zhong L; Fan F; Wang C; Zhu T; Mao SX
    Nat Nanotechnol; 2016 Oct; 11(10):866-871. PubMed ID: 27643458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reveal the Deformation Mechanism of (110) Silicon from Cryogenic Temperature to Elevated Temperature by Molecular Dynamics Simulation.
    Han J; Song Y; Tang W; Wang C; Fang L; Zhu H; Zhao J; Sun J
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31752128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.
    Wang B; Zhang Z; Cui J; Jiang N; Lyu J; Chen G; Wang J; Liu Z; Yu J; Lin C; Ye F; Guo D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29451-29456. PubMed ID: 28829563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High damage tolerance of electrochemically lithiated silicon.
    Wang X; Fan F; Wang J; Wang H; Tao S; Yang A; Liu Y; Beng Chew H; Mao SX; Zhu T; Xia S
    Nat Commun; 2015 Sep; 6():8417. PubMed ID: 26400671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation.
    Li C; Zhang F; Wang X; Rao X
    Appl Opt; 2018 May; 57(14):3661-3668. PubMed ID: 29791331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing C84-embedded Si Substrate Using Scanning Probe Microscopy and Molecular Dynamics.
    Ho MS; Huang CP; Tsai JH; Chou CF; Lee WJ
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27768037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques.
    Li X; Bhushan B; Takashima K; Baek CW; Kim YK
    Ultramicroscopy; 2003; 97(1-4):481-94. PubMed ID: 12801705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics of localized reaction, experiment and theory: methyl bromide on Si(111)-7x7.
    Guo H; Ji W; Polanyi JC; Yang JS
    ACS Nano; 2008 Apr; 2(4):699-706. PubMed ID: 19206601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.