BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30916088)

  • 1. Reply to the 'Comment on "Decoding real space bonding descriptors in valence bond language"' by S. Shaik, P. Hiberty and D. Danovich, Phys. Chem. Chem. Phys., 2019, 21, DOI: 10.1039/C8CP07225F.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2019 Apr; 21(15):8175-8178. PubMed ID: 30916088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Decoding real space bonding descriptors in valence bond language" by A. Martín Pendás and E. Francisco, Phys. Chem. Chem. Phys., 2018, 20, 12368.
    Hiberty PC; Danovich D; Shaik S
    Phys Chem Chem Phys; 2019 Apr; 21(15):8170-8174. PubMed ID: 30912532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding real space bonding descriptors in valence bond language.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2018 May; 20(18):12368-12372. PubMed ID: 29714368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl?
    Su P; Song L; Wu W; Shaik S; Hiberty PC
    J Phys Chem A; 2008 Apr; 112(13):2988-97. PubMed ID: 18331015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-Shift Bonding Emerges as a Distinct Electron-Pair Bonding Family from Both Valence Bond and Molecular Orbital Theories.
    Zhang H; Danovich D; Wu W; Braïda B; Hiberty PC; Shaik S
    J Chem Theory Comput; 2014 Jun; 10(6):2410-8. PubMed ID: 26580761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ground and excited states of polyenyl radicals C2n-1H2n + 1 (n = 2-13): a valence bond study.
    Luo Y; Song L; Wu W; Danovich D; Shaik S
    Chemphyschem; 2004 Apr; 5(4):515-28. PubMed ID: 15139226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accurate barrier for the hydrogen exchange reaction from valence bond theory: is this theory coming of age?
    Song L; Wu W; Hiberty PC; Danovich D; Shaik S
    Chemistry; 2003 Sep; 9(18):4540-7. PubMed ID: 14502640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barriers of hydrogen abstraction vs halogen exchange: an experimental manifestation of charge-shift bonding.
    Hiberty PC; Megret C; Song L; Wu W; Shaik S
    J Am Chem Soc; 2006 Mar; 128(9):2836-43. PubMed ID: 16506761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identity SN2 reactions X- + CH3X --> XCH3 + X- (X=F, Cl, Br, and I) in vacuum and in aqueous solution: a valence bond study.
    Song L; Wu W; Hiberty PC; Shaik S
    Chemistry; 2006 Sep; 12(28):7458-66. PubMed ID: 16874822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Menshutkin reaction in the gas phase and in aqueous solution: a valence bond study.
    Su P; Ying F; Wu W; Hiberty PC; Shaik S
    Chemphyschem; 2007 Dec; 8(18):2603-14. PubMed ID: 18061916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organohelium compounds: structures, stabilities and chemical bonding analyses.
    Fourré I; Alvarez E; Chaquin P
    Chemphyschem; 2014 Feb; 15(3):467-77. PubMed ID: 24488791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reply to the 'Comment on "Universal features in the lifetime distribution of clusters in hydrogen-bonding liquids"' by J. Grelska,
    Perera A; Lovrinčević B; Požar M
    Phys Chem Chem Phys; 2024 Feb; 26(6):5717-5719. PubMed ID: 38293786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some comments on valence bond representations for the radical exchange reaction X*+R:Y-->X:R+Y*.
    Harcourt RD; Schaefer K; Coote ML
    J Phys Chem A; 2007 Dec; 111(50):13278-82. PubMed ID: 18031026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pi bonding in second and third row molecules: testing the strength of Linus's blanket.
    Galbraith JM; Blank E; Shaik S; Hiberty PC
    Chemistry; 2000 Jul; 6(13):2425-34. PubMed ID: 10939744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Notes on valence bond structures for S2N2 and related systems.
    Harcourt RD
    Chemphyschem; 2013 Aug; 14(12):2859-64. PubMed ID: 23821556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reply to the 'Comment on "Revisiting π backbonding: the influence of d orbitals on metal-CO bonds and ligand red shifts"' by G. Frenking and S. Pan, Phys. Chem. Chem. Phys., 2019, 22, DOI.
    Koch D; Chen Y; Golub P; Manzhos S
    Phys Chem Chem Phys; 2020 Mar; 22(9):5380-5382. PubMed ID: 32077872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reply to the 'Comment on "Theoretical investigations on hydrogen peroxide decomposition in aquo"' by W. H. Koppenol,
    Tsuneda T; Taketsugu T
    Phys Chem Chem Phys; 2021 Nov; 23(45):26006-26008. PubMed ID: 34766606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reply to the 'Comment on "Revisiting π backbonding: the influence of d orbitals on metal-CO bonds and ligand red shifts"' by G. Frenking and S. Pan,
    Koch D; Chen Y; Golub P; Manzhos S
    Phys Chem Chem Phys; 2020 Mar; 22(9):5380-5382. PubMed ID: 34661588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reply to the 'Comment on "A universal approach for calculating the Judd-Ofelt parameters of RE
    Zhang Y; Chen B; Xu S; Li X; Zhang J; Sun J; Zhang X; Xia H; Hua R
    Phys Chem Chem Phys; 2019 May; 21(20):10840-10845. PubMed ID: 31089636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal natural atomic orbitals form an appropriate one-electron basis for expanding CASSCF wave functions into localized bonding schemes and their weights.
    Bachler V
    J Comput Chem; 2007 Sep; 28(12):2013-9. PubMed ID: 17407092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.