These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30916306)

  • 1. Oviposition Behavior of Culex annulirostris (Diptera: Culicidae) Is Affected by the Recent Presence of Invasive Gambusia holbrooki (Cyprinodontiformes: Poeciliidae).
    Hanford JK; Hochuli DF; Webb CE
    J Med Entomol; 2019 Jun; 56(4):1165-1169. PubMed ID: 30916306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Chemicals Associated Gambusia affinis (Cyprinodontiformes: Poeciliidae), and Their Effect on Oviposition Behavior of Culex tarsalis (Diptera: Culicidae) in the Laboratory.
    Why AM; Choe DH; Walton WE
    J Med Entomol; 2021 Nov; 58(6):2075-2090. PubMed ID: 34048562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oviposition Behavior of Culex tarsalis (Diptera: Culicidae) Responding to Semiochemicals Associated with the Western Mosquitofish, Gambusia affinis (Cyprinodontiformes: Poecilliidae).
    Why AM; Walton WE
    J Med Entomol; 2020 Feb; 57(2):343-352. PubMed ID: 31742605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanotaenia duboulayi influence oviposition site selection by Culex annulirostris (Diptera: Culicidae) and Aedes notoscriptus (Diptera: Culicidae) but not Culex quinquefasciatus (Diptera: Culicidae).
    Hurst TP; Kay BH; Brown MD; Ryan PA
    Environ Entomol; 2010 Apr; 39(2):545-51. PubMed ID: 20388286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of predatory fish exudates on the ovipostional behaviour of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis.
    Van Dam AR; Walton WE
    Med Vet Entomol; 2008 Dec; 22(4):399-404. PubMed ID: 19120968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mosquito oviposition and larvae development in response to kairomones originated by different fish.
    Cohen S; Silberbush A
    Med Vet Entomol; 2021 Mar; 35(1):129-133. PubMed ID: 32557738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory evaluation of the predation efficacy of native Australian fish on Culex annulirostris (Diptera: Culicidae).
    Hurst TP; Brown MD; Kay BH
    J Am Mosq Control Assoc; 2004 Sep; 20(3):286-91. PubMed ID: 15532929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ovipositional responses of two Culex (Diptera: Culicidae) species to larvivorous fish.
    Walton WE; Van Dam AR; Popko DA
    J Med Entomol; 2009 Nov; 46(6):1338-43. PubMed ID: 19960678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of mosquito predation by the fish Pseudomugil signifier Kner and Gambusia holbrooki (Girard) in laboratory trials.
    Willems KJ; Webb CE; Russell RC
    J Vector Ecol; 2005 Jun; 30(1):87-90. PubMed ID: 16007960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki).
    Su L; Nan B; Hassell KL; Craig NJ; Pettigrove V
    Chemosphere; 2019 Aug; 228():65-74. PubMed ID: 31022621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes.
    Angelon KA; Petranka JW
    J Chem Ecol; 2002 Apr; 28(4):797-806. PubMed ID: 12035927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining Culex annulirostris larval densities and control efforts across a coastal wetland, Northern Territory, Australia.
    Kurucz N; Jacups S; Carter JM
    J Vector Ecol; 2016 Dec; 41(2):271-278. PubMed ID: 27860005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish microbiota repel ovipositing mosquitoes.
    Shteindel N; Gerchman Y; Silberbush A
    J Anim Ecol; 2024 May; 93(5):599-605. PubMed ID: 38420662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.
    Medlock JM; Vaux AG
    Parasit Vectors; 2015 Mar; 8():142. PubMed ID: 25889666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring invasiveness and versatility of used microhabitats of the globally invasive Gambusia holbrooki.
    Kurtul I; Tarkan AS; Sarı HM; Haubrock PJ; Soto I; Aksu S; Britton JR
    Sci Total Environ; 2024 May; 925():171718. PubMed ID: 38490407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of inorganic nitrogen enrichment on mosquitoes (Diptera: Culicidae) and the associated aquatic community in constructed treatment wetlands.
    Sanford MR; Chan K; Walton WE
    J Med Entomol; 2005 Sep; 42(5):766-76. PubMed ID: 16363159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culex restuans (Diptera: Culicidae) oviposition behavior determined by larval habitat quality and quantity in southeastern Michigan.
    Reiskind MH; Wilson ML
    J Med Entomol; 2004 Mar; 41(2):179-86. PubMed ID: 15061276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal dynamics and habitat specificity of mosquitoes in an English wetland: implications for UK wetland management and restoration.
    Medlock JM; Vaux AG
    J Vector Ecol; 2015 Jun; 40(1):90-106. PubMed ID: 26047189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosquito seasonality and arboviral disease incidence in Murray Valley, southeast Australia.
    Dhileepan K
    Med Vet Entomol; 1996 Oct; 10(4):375-84. PubMed ID: 8994141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population genetic structure of the Culex pipiens (Diptera: Culicidae) complex, vectors of West Nile virus, in five habitats.
    Joyce AL; Melese E; Ha PT; Inman A
    Parasit Vectors; 2018 Jan; 11(1):10. PubMed ID: 29301567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.