BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30916408)

  • 1. Implementation of a new separation method to produce qualitatively improved
    van der Meulen NP; Hasler R; Blanc A; Farkas R; Benešová M; Talip Z; Müller C; Schibli R
    J Labelled Comp Radiopharm; 2019 Jun; 62(8):460-470. PubMed ID: 30916408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei.
    Avila-Rodriguez MA; Nye JA; Nickles RJ
    Appl Radiat Isot; 2007 Oct; 65(10):1115-20. PubMed ID: 17669663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of therapeutic quantities of (64)Cu using a 12 MeV cyclotron.
    Obata A; Kasamatsu S; McCarthy DW; Welch MJ; Saji H; Yonekura Y; Fujibayashi Y
    Nucl Med Biol; 2003 Jul; 30(5):535-9. PubMed ID: 12831992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing Reliable Cu-64 Production Process: From Target Plating to Molecular Specific Tumor Micro-PET Imaging.
    Xie Q; Zhu H; Wang F; Meng X; Ren Q; Xia C; Yang Z
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28420176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient preparation of high-quality
    Ohya T; Nagatsu K; Suzuki H; Fukada M; Minegishi K; Hanyu M; Fukumura T; Zhang MR
    Nucl Med Biol; 2016 Nov; 43(11):685-691. PubMed ID: 27580213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β--emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate.
    Müller C; Bunka M; Reber J; Fischer C; Zhernosekov K; Türler A; Schibli R
    J Nucl Med; 2013 Dec; 54(12):2168-74. PubMed ID: 24198390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield cyclotron production of
    Nelson BJB; Wilson J; Schultz MK; Andersson JD; Wuest F
    Nucl Med Biol; 2023; 116-117():108314. PubMed ID: 36708660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-scale production of
    Ohya T; Nagatsu K; Suzuki H; Fukada M; Minegishi K; Hanyu M; Zhang MR
    Nucl Med Biol; 2018 Apr; 59():56-60. PubMed ID: 29475187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and robust method for radiochemical separation of no-carrier-added
    Chakravarty R; Rajeswari A; Shetty P; Jagadeesan KC; Ram R; Jadhav S; Sarma HD; Dash A; Chakraborty S
    Appl Radiat Isot; 2020 Nov; 165():109341. PubMed ID: 32745917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelating ion-exchange methods for the preparation of no-carrier-added 64Cu.
    Watanabe S; Watanabe S; Liang J; Hanaoka H; Endo K; Ishioka NS
    Nucl Med Biol; 2009 Aug; 36(6):587-90. PubMed ID: 19647164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and preliminary evaluation of 63Zn-zinc citrate as a novel PET imaging biomarker for zinc.
    DeGrado TR; Pandey MK; Byrne JF; Engelbrecht HP; Jiang H; Packard AB; Thomas KA; Jacobson MS; Curran GL; Lowe VJ
    J Nucl Med; 2014 Aug; 55(8):1348-54. PubMed ID: 25047329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method for production of
    Moiseeva AN; Aliev RA; Furkina EB; Novikov VI; Unezhev VN
    Nucl Med Biol; 2022; 106-107():52-61. PubMed ID: 35032789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Copper Radionuclides in Compact Medical Cyclotrons using Solid Targets.
    Avila-Rodriguez MA; Valdovinos HF
    Curr Radiopharm; 2021; 14(4):340-353. PubMed ID: 32981514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging.
    Favaretto C; Talip Z; Borgna F; Grundler PV; Dellepiane G; Sommerhalder A; Zhang H; Schibli R; Braccini S; Müller C; van der Meulen NP
    EJNMMI Radiopharm Chem; 2021 Nov; 6(1):37. PubMed ID: 34778932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radioisotopic Purity of Sodium Pertechnetate 99mTc Produced with a Medium-Energy Cyclotron: Implications for Internal Radiation Dose, Image Quality, and Release Specifications.
    Selivanova SV; Lavallée É; Senta H; Caouette L; Sader JA; van Lier EJ; Zyuzin A; van Lier JE; Guérin B; Turcotte É; Lecomte R
    J Nucl Med; 2015 Oct; 56(10):1600-8. PubMed ID: 26205300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GMP-Automated Purification of Copper-61 Produced in Cyclotron Liquid Targets: Methodological Aspects.
    Fonseca AI; Alves VH; do Carmo SJC; Falcão A; Abrunhosa AJ; Alves F
    Curr Radiopharm; 2021; 14(4):420-428. PubMed ID: 33183218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved procedures of Sc(OH)3 precipitation and UTEVA extraction for 44Sc separation.
    Wojdowska W; Pawlak D; Cieszykowska I; Żółtowska M; Janiak T; Barcikowski T; Stolarz A; Choiński J; Parus J; Garnuszek P; Mikołajczak R
    Nucl Med Rev Cent East Eur; 2019; 22(2):56-59. PubMed ID: 31482557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developments toward the Implementation of
    van der Meulen NP; Hasler R; Talip Z; Grundler PV; Favaretto C; Umbricht CA; Müller C; Dellepiane G; Carzaniga TS; Braccini S
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066650
    [No Abstract]   [Full Text] [Related]  

  • 19. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of copper-64 using a hospital cyclotron: targetry, purification and quality analysis.
    Jauregui-Osoro M; De Robertis S; Halsted P; Gould SM; Yu Z; Paul RL; Marsden PK; Gee AD; Fenwick A; Blower PJ
    Nucl Med Commun; 2021 Sep; 42(9):1024-1038. PubMed ID: 34397988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.