These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30916548)
1. Reverse Electrodialysis Chemical Cell for Energy Harvesting from Controlled Acid-Base Neutralization. Mei Y; Liu L; Lu YC; Tang CY Environ Sci Technol; 2019 Apr; 53(8):4640-4647. PubMed ID: 30916548 [TBL] [Abstract][Full Text] [Related]
2. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients. Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Yip NY; Vermaas DA; Nijmeijer K; Elimelech M Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542 [TBL] [Abstract][Full Text] [Related]
4. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation. Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402 [TBL] [Abstract][Full Text] [Related]
5. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage. Zhu X; Kim T; Rahimi M; Gorski CA; Logan BE ChemSusChem; 2017 Feb; 10(4):797-803. PubMed ID: 27911491 [TBL] [Abstract][Full Text] [Related]
6. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
7. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Cusick RD; Kim Y; Logan BE Science; 2012 Mar; 335(6075):1474-7. PubMed ID: 22383807 [TBL] [Abstract][Full Text] [Related]
8. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Veerman J; Saakes M; Metz SJ; Harmsen GJ Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356 [TBL] [Abstract][Full Text] [Related]
9. Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine. Luo F; Wang Y; Sha M; Wei Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766700 [TBL] [Abstract][Full Text] [Related]
10. Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack. Ma P; Hao X; Galia A; Scialdone O Chemosphere; 2020 Jun; 248():125994. PubMed ID: 32035382 [TBL] [Abstract][Full Text] [Related]
11. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients. Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999 [TBL] [Abstract][Full Text] [Related]
12. Integrating reverse electrodialysis with constant current operating capacitive deionization. Jande YAC; Kim WS J Environ Manage; 2014 Dec; 146():463-469. PubMed ID: 25150096 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems. Ju J; Choi Y; Lee S; Park CG; Hwang T; Jung N Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448343 [TBL] [Abstract][Full Text] [Related]
14. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447 [TBL] [Abstract][Full Text] [Related]
15. Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients. Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ J Memb Sci; 2021 Jun; 627():119245. PubMed ID: 34083864 [TBL] [Abstract][Full Text] [Related]
16. Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters. Veerman J Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676877 [TBL] [Abstract][Full Text] [Related]
17. Generation of energy from salinity gradients using capacitive reverse electro dialysis: a review. Ramasamy G; Rajkumar PK; Narayanan M Environ Sci Pollut Res Int; 2021 Dec; 28(45):63672-63681. PubMed ID: 33400126 [TBL] [Abstract][Full Text] [Related]
18. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis. Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203 [TBL] [Abstract][Full Text] [Related]
19. Paper-based energy harvesting from salinity gradients. Chang HK; Choi E; Park J Lab Chip; 2016 Feb; 16(4):700-8. PubMed ID: 26768119 [TBL] [Abstract][Full Text] [Related]
20. The reverse electrodialysis driven electrochemical process assisted by anodic photocatalysis for hydrogen peroxide production. Xu P; Xu H; Zheng D; Ma J; Hou B Chemosphere; 2019 Dec; 237():124509. PubMed ID: 31400741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]