BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 30916675)

  • 21. Exploring the potential of electroless and electroplated noble metal-semiconductor hybrids within bio- and environmental sensing.
    Semenova D; Gernaey KV; Silina YE
    Analyst; 2018 Nov; 143(23):5646-5669. PubMed ID: 30328420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors.
    Tran HV; Piro B
    Mikrochim Acta; 2021 Mar; 188(4):128. PubMed ID: 33740140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress in miRNA Detection Using Graphene Material-Based Biosensors.
    Zhang C; Miao P; Sun M; Yan M; Liu H
    Small; 2019 Sep; 15(38):e1901867. PubMed ID: 31379135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes.
    Dey RS; Bera RK; Raj CR
    Anal Bioanal Chem; 2013 Apr; 405(11):3431-48. PubMed ID: 23254456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review.
    Esmaeilzadeh AA; Yaseen MM; Khudaynazarov U; Al-Gazally ME; Catalan Opulencia MJ; Jalil AT; Mohammed RN
    Anal Methods; 2022 Nov; 14(44):4449-4459. PubMed ID: 36330992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers.
    Liu Q; Ma C; Liu XP; Wei YP; Mao CJ; Zhu JJ
    Biosens Bioelectron; 2017 Jun; 92():273-279. PubMed ID: 28235734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.
    Li M; Li R; Li CM; Wu N
    Front Biosci (Schol Ed); 2011 Jun; 3(4):1308-31. PubMed ID: 21622273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomaterials as efficient platforms for sensing DNA.
    Vikrant K; Bhardwaj N; Bhardwaj SK; Kim KH; Deep A
    Biomaterials; 2019 Sep; 214():119215. PubMed ID: 31146176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials.
    Goud KY; Reddy KK; Satyanarayana M; Kummari S; Gobi KV
    Mikrochim Acta; 2019 Dec; 187(1):29. PubMed ID: 31813061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals.
    Li YK; Yang T; Chen ML; Wang JH
    Crit Rev Anal Chem; 2021; 51(4):353-372. PubMed ID: 32182101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food.
    Wang L; Peng X; Fu H; Huang C; Li Y; Liu Z
    Biosens Bioelectron; 2020 Jan; 147():111777. PubMed ID: 31634804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing.
    Terra IAA; Mercante LA; Andre RS; Correa DS
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29244741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics.
    Martino S; Tammaro C; Misso G; Falco M; Scrima M; Bocchetti M; Rea I; De Stefano L; Caraglia M
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives.
    Kumar P; Rajan R; Upadhyaya K; Behl G; Xiang XX; Huo P; Liu B
    Environ Res; 2024 Apr; 247():118002. PubMed ID: 38151147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomaterials for Biosensing Lipopolysaccharide.
    Sondhi P; Maruf MHU; Stine KJ
    Biosensors (Basel); 2019 Dec; 10(1):. PubMed ID: 31877825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection.
    Bollella P; Fusco G; Tortolini C; Sanzò G; Favero G; Gorton L; Antiochia R
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):152-166. PubMed ID: 27132999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification.
    Xia N; Liu K; Zhou Y; Li Y; Yi X
    Int J Nanomedicine; 2017; 12():5013-5022. PubMed ID: 28761341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patulin and Trichothecene: characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs.
    Sohrabi H; Arbabzadeh O; Khaaki P; Khataee A; Majidi MR; Orooji Y
    Crit Rev Food Sci Nutr; 2022; 62(20):5540-5568. PubMed ID: 33624529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced methods for microRNA biosensing: a problem-solving perspective.
    D'Agata R; Spoto G
    Anal Bioanal Chem; 2019 Jul; 411(19):4425-4444. PubMed ID: 30710205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules).
    Harshita ; Wu HF; Kailasa SK
    Luminescence; 2023 Jul; 38(7):954-998. PubMed ID: 35929140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.