BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30916848)

  • 1. Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering.
    Ebrahimi M; Botelho M; Lu W; Monmaturapoj N
    J Biomed Mater Res A; 2019 Aug; 107(8):1654-1666. PubMed ID: 30916848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations.
    Brouillet F; Laurencin D; Grossin D; Drouet C; Estournes C; Chevallier G; Rey C
    J Mater Sci Mater Med; 2015 Aug; 26(8):223. PubMed ID: 26271216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering.
    Nga NK; Thuy Chau NT; Viet PH
    Colloids Surf B Biointerfaces; 2018 Dec; 172():769-778. PubMed ID: 30266011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in synthesis of calcium phosphate crystals with controlled size and shape.
    Lin K; Wu C; Chang J
    Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review.
    Venkatesan J; Kim SK
    J Biomed Nanotechnol; 2014 Oct; 10(10):3124-40. PubMed ID: 25992432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of biphasic calcium phosphate (BCP) ceramics of tilapia fish bones by age.
    da Cruz JA; Pezarini RR; Sales AJM; Benjamin SR; de Oliveira Silva PM; Graça MPF
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124289. PubMed ID: 38692101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.
    Hu J; Yang Z; Zhou Y; Liu Y; Li K; Lu H
    J Mater Sci Mater Med; 2015 Nov; 26(11):257. PubMed ID: 26449447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical and biological properties of polymer-based nanocomposites with improved dispersion of ceramic nanoparticles.
    Wetteland CL; Liu H
    J Biomed Mater Res A; 2018 Oct; 106(10):2692-2707. PubMed ID: 29901266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation of Biomimetic Biphasic Calcium Phosphate Nanoparticles.
    Zhang Q; Xue Z; Wang X; Xu D
    J Phys Chem B; 2022 Nov; 126(46):9726-9736. PubMed ID: 36378585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering.
    Dessì M; Borzacchiello A; Mohamed TH; Abdel-Fattah WI; Ambrosio L
    J Biomed Mater Res A; 2013 Oct; 101(10):2984-93. PubMed ID: 23873836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the role of size of hydroxyl apatite particles toward the development of competent antiosteoporotic bioceramic materials: In vitro and in vivo studies.
    Kaur K; Singh KJ; Anand V; Bhatia G; Singh AP; Kaur M
    J Biomed Mater Res A; 2019 Aug; 107(8):1723-1735. PubMed ID: 30924267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.
    Tong SY; Wang Z; Lim PN; Wang W; Thian ES
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1149-1155. PubMed ID: 27772716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.
    Vecbiskena L; Gross KA; Riekstina U; Yang TC
    Biomed Mater; 2015 Apr; 10(2):025009. PubMed ID: 25886478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.
    Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic calcium phosphates (BCP) of hydroxyapatite (HA) and tricalcium phosphate (TCP) as bone substitutes: Importance of physicochemical characterizations in biomaterials studies.
    Ebrahimi M; Botelho M
    Data Brief; 2017 Feb; 10():93-97. PubMed ID: 27981198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering.
    Lim KT; Suh JD; Kim J; Choung PH; Chung JH
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):399-411. PubMed ID: 21953824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: in vitro and preliminary in vivo studies.
    Reddy S; Wasnik S; Guha A; Kumar JM; Sinha A; Singh S
    J Biomater Appl; 2013 Jan; 27(5):565-75. PubMed ID: 22286210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.