BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30917009)

  • 1. Analysis of hydrophobic and hydrophilic moments of short penetrating peptides for enhancing mitochondrial localization: prediction and validation.
    Pirisinu M; Blasco P; Tian X; Sen Y; Bode AM; Liu K; Dong Z
    FASEB J; 2019 Jul; 33(7):7970-7984. PubMed ID: 30917009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial transit peptide exhibits cell penetration ability and efficiently delivers macromolecules to mitochondria.
    Jain A; Chugh A
    FEBS Lett; 2016 Sep; 590(17):2896-905. PubMed ID: 27461847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of novel peptides for mitochondrial drug delivery: amino acids featuring delocalized lipophilic cations.
    Kelley SO; Stewart KM; Mourtada R
    Pharm Res; 2011 Nov; 28(11):2808-19. PubMed ID: 21833796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.
    Upadhya A; Sangave PC
    J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system.
    Amit C; Muralikumar S; Janaki S; Lakshmipathy M; Therese KL; Umashankar V; Padmanabhan P; Narayanan J
    Int J Nanomedicine; 2019; 14():605-622. PubMed ID: 30697045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.
    Lin R; Zhang P; Cheetham AG; Walston J; Abadir P; Cui H
    Bioconjug Chem; 2015 Jan; 26(1):71-7. PubMed ID: 25547808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of hydrophobic and hydrophilic interactions in sequence-dependent cell penetration of spontaneous membrane-translocating peptides revealed by bias-exchange metadynamics simulations.
    Cao Z; Liu L; Hu G; Bian Y; Li H; Wang J; Zhou Y
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183402. PubMed ID: 32569587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design.
    Schmidt S; Adjobo-Hermans MJ; Kohze R; Enderle T; Brock R; Milletti F
    Bioconjug Chem; 2017 Feb; 28(2):382-389. PubMed ID: 27966361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional peptide hybrids targeting the matrix of mitochondria.
    Klimpel A; Neundorf I
    J Control Release; 2018 Dec; 291():147-156. PubMed ID: 30367921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics.
    Grasso G; Muscat S; Rebella M; Morbiducci U; Audenino A; Danani A; Deriu MA
    J Biomech; 2018 May; 73():137-144. PubMed ID: 29631749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier.
    Young Kim H; Young Yum S; Jang G; Ahn DR
    Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of cell membrane impermeable peptides into living cells by using head-to-tail cyclized mitochondria-penetrating peptides.
    Yang QQ; Zhu LJ; Xi TK; Zhu HY; Chen XX; Wu M; Sun C; Xu C; Fang GM; Meng X
    Org Biomol Chem; 2019 Dec; 17(45):9693-9697. PubMed ID: 31691700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel cell-penetrating peptide targeting mitochondria.
    Cerrato CP; Pirisinu M; Vlachos EN; Langel Ü
    FASEB J; 2015 Nov; 29(11):4589-99. PubMed ID: 26195590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatility of cell-penetrating peptides for intracellular delivery of siRNA.
    Singh T; Murthy ASN; Yang HJ; Im J
    Drug Deliv; 2018 Nov; 25(1):1996-2006. PubMed ID: 30799658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.