These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30917171)

  • 1. Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches.
    Weng SF; Vaz L; Qureshi N; Kai J
    PLoS One; 2019; 14(3):e0214365. PubMed ID: 30917171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
    Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M
    PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    Weng SF; Reps J; Kai J; Garibaldi JM; Qureshi N
    PLoS One; 2017; 12(4):e0174944. PubMed ID: 28376093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of Risk Scores for All-Cause Mortality for a Smartphone-Based "General Health Score" App: Prospective Cohort Study Using the UK Biobank.
    Clift AK; Le Lannou E; Tighe CP; Shah SS; Beatty M; Hyvärinen A; Lane SJ; Strauss T; Dunn DD; Lu J; Aral M; Vahdat D; Ponzo S; Plans D
    JMIR Mhealth Uhealth; 2021 Feb; 9(2):e25655. PubMed ID: 33591285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality.
    Kanwal F; Taylor TJ; Kramer JR; Cao Y; Smith D; Gifford AL; El-Serag HB; Naik AD; Asch SM
    JAMA Netw Open; 2020 Nov; 3(11):e2023780. PubMed ID: 33141161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic stress in practice assistants: An analytic approach comparing four machine learning classifiers with a standard logistic regression model.
    Bozorgmehr A; Thielmann A; Weltermann B
    PLoS One; 2021; 16(5):e0250842. PubMed ID: 33945572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Sepsis Mortality in a Population-Based National Database: Machine Learning Approach.
    Park JY; Hsu TC; Hu JR; Chen CY; Hsu WT; Lee M; Ho J; Lee CC
    J Med Internet Res; 2022 Apr; 24(4):e29982. PubMed ID: 35416785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-Based Prediction of Elevated PTH Levels Among the US General Population.
    Kato H; Hoshino Y; Hidaka N; Ito N; Makita N; Nangaku M; Inoue K
    J Clin Endocrinol Metab; 2022 Nov; 107(12):3222-3230. PubMed ID: 36125184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
    Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K
    PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Framingham risk score conventional risk factors are potent to predict all-cause mortality using machine learning algorithms: a population-based prospective cohort study over 40 years in China.
    Huang Q; Zeng T; Zhang J; Min J; Zheng J; Tian S; Huang H; Liu X; Zhang H; Wang P; Hu X; Chen L
    J Investig Med; 2023 Aug; 71(6):586-590. PubMed ID: 37144834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis.
    Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y
    Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary care electronic medical records can be used to predict risk and identify potentially modifiable factors for early and late death in adult onset epilepsy.
    Hrabok M; Engbers JDT; Wiebe S; Sajobi TT; Subota A; Almohawes A; Federico P; Hanson A; Klein KM; Peedicail J; Pillay N; Singh S; Josephson CB
    Epilepsia; 2021 Jan; 62(1):51-60. PubMed ID: 33316095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults.
    Lynam AL; Dennis JM; Owen KR; Oram RA; Jones AG; Shields BM; Ferrat LA
    Diagn Progn Res; 2020; 4():6. PubMed ID: 32607451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.
    Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G
    ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.
    Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN;
    Clin Orthop Relat Res; 2024 Mar; ():. PubMed ID: 38470976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering Clinical Risk Factors and Predicting Severe COVID-19 Cases Using UK Biobank Data: Machine Learning Approach.
    Wong KC; Xiang Y; Yin L; So HC
    JMIR Public Health Surveill; 2021 Sep; 7(9):e29544. PubMed ID: 34591027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning is an effective method to predict the 90-day prognosis of patients with transient ischemic attack and minor stroke.
    Chen SD; You J; Yang XM; Gu HQ; Huang XY; Liu H; Feng JF; Jiang Y; Wang YJ
    BMC Med Res Methodol; 2022 Jul; 22(1):195. PubMed ID: 35842606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.