These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30917357)

  • 1. Toward optical coherence tomography angiography-based biomarkers to assess the safety of peripheral nerve electrostimulation.
    Vasudevan S; Vo J; Shafer B; Nam AS; Vakoc BJ; Hammer DX
    J Neural Eng; 2019 Jun; 16(3):036024. PubMed ID: 30917357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute intermittent hypoxia enhances regeneration of surgically repaired peripheral nerves in a manner akin to electrical stimulation.
    Nadeau JR; Arnold BM; Johnston JM; Muir GD; Verge VMK
    Exp Neurol; 2021 Jul; 341():113671. PubMed ID: 33684407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting Nerve Regeneration: Electrical Stimulation, Gene Therapy, and Beyond.
    O'Brien AL; West JM; Saffari TM; Nguyen M; Moore AM
    Physiology (Bethesda); 2022 Nov; 37(6):0. PubMed ID: 35820181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fascicle specific targeting for selective peripheral nerve stimulation.
    Overstreet CK; Cheng J; Keefer EW
    J Neural Eng; 2019 Nov; 16(6):066040. PubMed ID: 31509815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental model of an electrical injury to the peripheral nerve.
    Fan KW; Zhu ZX; Den ZY
    Burns; 2005 Sep; 31(6):731-6. PubMed ID: 16129227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Feedback Control and Electrical-Optical Costimulation of Peripheral Nerves.
    Kapur SK; Richner TJ; Brodnick SK; Williams JC; Poore SO
    Plast Reconstr Surg; 2016 Sep; 138(3):451e-460e. PubMed ID: 27556620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating optical coherence tomography for observing nerve activity: A finite difference time domain bi-dimensional model.
    Troiani F; Nikolic K; Constandinou TG
    PLoS One; 2018; 13(7):e0200392. PubMed ID: 29990346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of polarization-sensitive optical coherence tomography imaging platform and metrics to quantify electrostimulation-induced peripheral nerve injury
    Monroy GL; Erfanzadeh M; Tao M; DePaoli DT; Saytashev I; Nam SA; Rafi H; Kwong KC; Shea K; Vakoc BJ; Vasudevan S; Hammer DX
    Neurophotonics; 2023 Apr; 10(2):025004. PubMed ID: 37077218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation.
    Zuo KJ; Gordon T; Chan KM; Borschel GH
    Exp Neurol; 2020 Oct; 332():113397. PubMed ID: 32628968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved
    Saytashev I; Yoon YC; Vakoc BJ; Vasudevan S; Hammer DX
    J Biomed Opt; 2023 Feb; 28(2):026002. PubMed ID: 36785561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Localization of peripheral nerves. Success and safety with electrical nerve stimulation].
    Neuburger M; Schwemmer U; Volk T; Gogarten W; Kessler P; Steinfeldt T
    Anaesthesist; 2014 May; 63(5):422-8. PubMed ID: 24715260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art.
    Günter C; Delbeke J; Ortiz-Catalan M
    J Neuroeng Rehabil; 2019 Jan; 16(1):13. PubMed ID: 30658656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence tomography angiography findings in patients undergoing transcorneal electrical stimulation for treating retinitis pigmentosa.
    Zabek O; Camenzind Zuche H; Müller U; Scholl HPN; Rickmann A; Della Volpe Waizel M
    Graefes Arch Clin Exp Ophthalmol; 2021 May; 259(5):1167-1177. PubMed ID: 33037922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes.
    Zellmer ER; MacEwan MR; Moran DW
    J Neural Eng; 2018 Apr; 15(2):026009. PubMed ID: 29192607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed laser versus electrical energy for peripheral nerve stimulation.
    Wells J; Konrad P; Kao C; Jansen ED; Mahadevan-Jansen A
    J Neurosci Methods; 2007 Jul; 163(2):326-37. PubMed ID: 17537515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plexus-specific effect of flicker-light stimulation on the retinal microvasculature assessed with optical coherence tomography angiography.
    Kallab M; Hommer N; Tan B; Pfister M; Schlatter A; Werkmeister RM; Chua J; Schmidl D; Schmetterer L; Garhöfer G
    Am J Physiol Heart Circ Physiol; 2021 Jan; 320(1):H23-H28. PubMed ID: 33275537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces.
    Eiber CD; Payne SC; Biscola NP; Havton LA; Keast JR; Osborne PB; Fallon JB
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34740201
    [No Abstract]   [Full Text] [Related]  

  • 19. Imaging fast neural traffic at fascicular level with electrical impedance tomography: proof of principle in rat sciatic nerve.
    Aristovich K; Donegá M; Blochet C; Avery J; Hannan S; Chew DJ; Holder D
    J Neural Eng; 2018 Oct; 15(5):056025. PubMed ID: 30070261
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.