These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30917359)

  • 1. Modeling neural circuit, blood-brain barrier, and myelination on a microfluidic 96 well plate.
    Lee SR; Hyung S; Bang S; Lee Y; Ko J; Lee S; Kim HJ; Jeon NL
    Biofabrication; 2019 Apr; 11(3):035013. PubMed ID: 30917359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform.
    Lee HU; Nag S; Blasiak A; Jin Y; Thakor N; Yang IH
    ACS Chem Neurosci; 2016 Oct; 7(10):1317-1324. PubMed ID: 27570883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular Optogenetic Stimulation Platform for Studying Activity-Dependent Axon Myelination In Vitro.
    Blasiak A; Nag S; Yang IH
    Methods Mol Biol; 2018; 1791():207-224. PubMed ID: 30006712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis.
    Ko J; Ahn J; Kim S; Lee Y; Lee J; Park D; Jeon NL
    Lab Chip; 2019 Sep; 19(17):2822-2833. PubMed ID: 31360969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapto-protective drugs evaluation in reconstructed neuronal network.
    Deleglise B; Lassus B; Soubeyre V; Alleaume-Butaux A; Hjorth JJ; Vignes M; Schneider B; Brugg B; Viovy JL; Peyrin JM
    PLoS One; 2013; 8(8):e71103. PubMed ID: 23976987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics for Neuronal Cell and Circuit Engineering.
    Habibey R; Rojo Arias JE; Striebel J; Busskamp V
    Chem Rev; 2022 Sep; 122(18):14842-14880. PubMed ID: 36070858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics within a well: an injection-molded plastic array 3D culture platform.
    Lee Y; Choi JW; Yu J; Park D; Ha J; Son K; Lee S; Chung M; Kim HY; Jeon NL
    Lab Chip; 2018 Aug; 18(16):2433-2440. PubMed ID: 29999064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered 3D vascular and neuronal networks in a microfluidic platform.
    Osaki T; Sivathanu V; Kamm RD
    Sci Rep; 2018 Mar; 8(1):5168. PubMed ID: 29581463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plate reader-compatible microchannel array for cell biology assays.
    Yu H; Alexander CM; Beebe DJ
    Lab Chip; 2007 Mar; 7(3):388-91. PubMed ID: 17330172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling PNS and CNS Myelination Using Microfluidic Chambers.
    Vaquié A; Sauvain A; Jacob C
    Methods Mol Biol; 2018; 1791():157-168. PubMed ID: 30006708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Microfluidic Blood-Brain Barrier (BBB) Models.
    Oddo A; Peng B; Tong Z; Wei Y; Tong WY; Thissen H; Voelcker NH
    Trends Biotechnol; 2019 Dec; 37(12):1295-1314. PubMed ID: 31130308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic 3D On-Chip BBB Model Design, Development, and Applications in Neurological Diseases.
    Chen X; Liu C; Muok L; Zeng C; Li Y
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish.
    Yin W; Hu B
    Exp Neurol; 2014 Jan; 251():72-83. PubMed ID: 24262204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preliminary study on the construction of three-dimensional hippocampal neural network by using microfluidic technology
    Kong X; Tian S; Chen T; Huang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Feb; 33(2):239-242. PubMed ID: 30739423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes.
    Bang S; Lee SR; Ko J; Son K; Tahk D; Ahn J; Im C; Jeon NL
    Sci Rep; 2017 Aug; 7(1):8083. PubMed ID: 28808270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuro-optical microfluidic platform to study injury and regeneration of single axons.
    Kim YT; Karthikeyan K; Chirvi S; Davé DP
    Lab Chip; 2009 Sep; 9(17):2576-81. PubMed ID: 19680581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Blood-Brain Barrier Models-An Overview of Established Models and New Microfluidic Approaches.
    Wolff A; Antfolk M; Brodin B; Tenje M
    J Pharm Sci; 2015 Sep; 104(9):2727-46. PubMed ID: 25630899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood-brain barrier permeability in astrocyte-free regions of the central nervous system remyelinated by Schwann cells.
    Felts PA; Smith KJ
    Neuroscience; 1996 Nov; 75(2):643-55. PubMed ID: 8931026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of myelin in the brain of the juvenile rat.
    Downes N; Mullins P
    Toxicol Pathol; 2014 Jul; 42(5):913-22. PubMed ID: 24129760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Microfluidic Platform for Flexible Configuration of and Experiments with Microtissue Multiorgan Models.
    Lohasz C; Rousset N; Renggli K; Hierlemann A; Frey O
    SLAS Technol; 2019 Feb; 24(1):79-95. PubMed ID: 30289726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.