These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30917555)

  • 1. In-Depth Investigation into the Transient Humidity Response at the Body-Seat Interface on Initial Contact Using a Dual Temperature and Humidity Sensor.
    Liu Z; Li J; Liu M; Cascioli V; McCarthy PW
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30917555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Assessment of a Humidity Measurement System and Its Use to Evaluate Moisture Characteristics of Wheelchair Cushions at the User-Seat Interface.
    Liu Z; Cheng H; Luo Z; Cascioli V; Heusch AI; Nair NR; McCarthy PW
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28379165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying thermal characteristics of seating materials by recording temperature from 3 positions at the seat-subject interface.
    Liu Z; Cascioli V; Heusch AI; McCarthy PW
    J Tissue Viability; 2011 Aug; 20(3):73-80. PubMed ID: 21646019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of humidity and temperature sensors and their application to seating.
    McCarthy PW; Liu Z; Heusch AI; Cascioli V
    J Med Eng Technol; 2009; 33(6):449-53. PubMed ID: 19479607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cushion properties on skin temperature and humidity at the body-support interface.
    Hsu TW; Yang SY; Liu JT; Pan CT; Yang YS
    Assist Technol; 2018; 30(1):1-8. PubMed ID: 27689690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.
    Liu Z; Wang L; Luo Z; Heusch AI; Cascioli V; McCarthy PW
    J Tissue Viability; 2015 Nov; 24(4):131-9. PubMed ID: 26338500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Subject, Feasibility Study of Using a Non-Contact Measurement to "Visualize" Temperature at Body-Seat Interface.
    Liu Z; Cascioli V; McCarthy PW
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prolonged sitting on body-seat contact pressures among quay crane operators: A pilot study.
    Pau M; Leban B; Fadda P; Fancello G; Nussbaum MA
    Work; 2016 Nov; 55(3):605-611. PubMed ID: 27814319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributed Fiberoptic Sensor for Simultaneous Humidity and Temperature Monitoring Based on Polyimide-Coated Optical Fibers.
    Stajanca P; Hicke K; Krebber K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31801209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Measuring Microenvironmental Changes at the Body-Seat Interface and the Relationship between Object Measurement and Subjective Evaluation.
    Liu Z; Cascioli V; McCarthy PW
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal change in psychological and physiological responses to consistent relative humidity.
    Kakitsuba N; Chen Q; Komatsu Y
    J Therm Biol; 2020 Feb; 88():102490. PubMed ID: 32125978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Settling down time following initial sitting and its relationship with comfort and discomfort.
    Cascioli V; Liu Z; Heusch AI; McCarthy PW
    J Tissue Viability; 2011 Nov; 20(4):121-9. PubMed ID: 21684748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses to changes in relative humidity under thermally neutral, warm and hot conditions.
    Kakitsuba N
    J Therm Biol; 2016 Jul; 59():86-91. PubMed ID: 27264893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance humidity sensor using Schottky-contacted SnS nanoflakes for noncontact healthcare monitoring.
    Tang H; Li Y; Ye H; Hu F; Gao C; Tao L; Tu T; Gou G; Chen X; Fan X; Ren T; Zhang G
    Nanotechnology; 2020 Jan; 31(5):055501. PubMed ID: 31484166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and subjective responses to low relative humidity in young and elderly men.
    Sunwoo Y; Chou C; Takeshita J; Murakami M; Tochihara Y
    J Physiol Anthropol; 2006 May; 25(3):229-38. PubMed ID: 16763365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human thermal physiological and psychological responses under different heating environments.
    Wang Z; Ning H; Ji Y; Hou J; He Y
    J Therm Biol; 2015 Aug; 52():177-86. PubMed ID: 26267512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of micro mist sauna bathing on thermoregulatory and circulatory functions and thermal sensation in humans.
    Iwase S; Kawahara Y; Nishimura N; Sugenoya J
    Int J Biometeorol; 2016 May; 60(5):699-709. PubMed ID: 26384686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays.
    Zellers ET; Han M
    Anal Chem; 1996 Jul; 68(14):2409-18. PubMed ID: 8686930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low humidity and high air velocity in a heated room on physiological responses and thermal comfort after bathing: an experimental study.
    Hashiguchi N; Tochihara Y
    Int J Nurs Stud; 2009 Feb; 46(2):172-80. PubMed ID: 19004439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the circutone seat on hemodynamic, subjective, and thermal responses to prolonged sitting.
    Shvartz E; Gaume JG; Reibold RC; Glassford EJ; White RT
    Aviat Space Environ Med; 1982 Aug; 53(8):795-802. PubMed ID: 7181812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.