BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30917651)

  • 1. Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein.
    Bhattacharya S; Xu L; Thompson D
    ACS Chem Neurosci; 2019 Jun; 10(6):2830-2842. PubMed ID: 30917651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range Regulation of Partially Folded Amyloidogenic Peptides.
    Bhattacharya S; Xu L; Thompson D
    Sci Rep; 2020 May; 10(1):7597. PubMed ID: 32371882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Amyloidogenic Peptide Aggregability in Helical Subspace.
    Bhattacharya S; Xu L; Thompson D
    Methods Mol Biol; 2022; 2340():401-448. PubMed ID: 35167084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β
    Shuaib S; Goyal B
    J Biomol Struct Dyn; 2018 Feb; 36(3):663-678. PubMed ID: 28162045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation.
    Sonar K; Mancera RL
    J Phys Chem B; 2022 Oct; 126(40):7916-7933. PubMed ID: 36179370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation.
    Sanjeev A; Sahu RK; Mattaparthi VSK
    J Biomol Struct Dyn; 2017 Nov; 35(15):3342-3353. PubMed ID: 27809690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the intrinsically unfolded protein beta-synuclein, a natural negative regulator of alpha-synuclein aggregation.
    Bertoncini CW; Rasia RM; Lamberto GR; Binolfi A; Zweckstetter M; Griesinger C; Fernandez CO
    J Mol Biol; 2007 Sep; 372(3):708-22. PubMed ID: 17681539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A KLVFFAE-Derived Peptide Probe for Detection of Alpha-Synuclein Fibrils.
    Wood A; Chau E; Yang Y; Kim JR
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1411-1424. PubMed ID: 31776941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Turn exchanges in the α-synuclein segment 44-TKEG-47 reveal high sequence fidelity requirements of amyloid fibril elongation.
    Agerschou ED; Schützmann MP; Reppert N; Wördehoff MM; Shaykhalishahi H; Buell AK; Hoyer W
    Biophys Chem; 2021 Feb; 269():106519. PubMed ID: 33333378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-alpha-acetylation of α-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation.
    Bartels T; Kim NC; Luth ES; Selkoe DJ
    PLoS One; 2014; 9(7):e103727. PubMed ID: 25075858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering the Binding and Specificity of β-Wrapins for Amyloid-β and α-Synuclein.
    Orr AA; Wördehoff MM; Hoyer W; Tamamis P
    J Phys Chem B; 2016 Dec; 120(50):12781-12794. PubMed ID: 27934063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations.
    Nguyen PH; Derreumaux P
    Biophys Chem; 2020 Sep; 264():106421. PubMed ID: 32623047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Structural Insights of Aβ42 and α-Synuclein Monomers and Heterodimer: A Comparative Study Using Implicit and Explicit Solvent Simulations.
    Varenyk Y; Theodorakis PE; Pham DQH; Li MS; Krupa P
    J Phys Chem B; 2024 May; 128(19):4655-4669. PubMed ID: 38700150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study.
    Lam AR; Teplow DB; Stanley HE; Urbanc B
    J Am Chem Soc; 2008 Dec; 130(51):17413-22. PubMed ID: 19053400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment.
    Kundu S
    J Biomol Struct Dyn; 2018 Feb; 36(2):302-317. PubMed ID: 28024449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields.
    Wu KY; Doan D; Medrano M; Chang CA
    J Biomol Struct Dyn; 2022; 40(20):10005-10022. PubMed ID: 34152264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation.
    Anderson VL; Ramlall TF; Rospigliosi CC; Webb WW; Eliezer D
    Proc Natl Acad Sci U S A; 2010 Nov; 107(44):18850-5. PubMed ID: 20947801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helical intermediate formation and its role in amyloids of an amphibian antimicrobial peptide.
    Prasad AK; Martin LL; Panwar AS
    Phys Chem Chem Phys; 2023 May; 25(17):12134-12147. PubMed ID: 37070341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into α-synuclein plasticity and misfolding from differential micelle binding.
    Mazumder P; Suk JE; Ulmer TS
    J Phys Chem B; 2013 Oct; 117(39):11448-59. PubMed ID: 23978162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.