These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy. Tabata K; Imai K; Fukuda K; Yamamoto K; Kunugi H; Fujita T; Kaminishi T; Tischer C; Neumann B; Reither S; Verissimo F; Pepperkok R; Yoshimori T; Hamasaki M Nat Commun; 2024 Aug; 15(1):7194. PubMed ID: 39169022 [TBL] [Abstract][Full Text] [Related]
10. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Park JM; Jung CH; Seo M; Otto NM; Grunwald D; Kim KH; Moriarity B; Kim YM; Starker C; Nho RS; Voytas D; Kim DH Autophagy; 2016; 12(3):547-64. PubMed ID: 27046250 [TBL] [Abstract][Full Text] [Related]
11. Exploring the ATG9A interactome uncovers interaction with VPS13A. van Vliet AR; Jefferies HBJ; Faull PA; Chadwick J; Ibrahim F; Skehel MJ; Tooze SA J Cell Sci; 2024 Feb; 137(4):. PubMed ID: 38294121 [TBL] [Abstract][Full Text] [Related]
12. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Mailler E; Guardia CM; Bai X; Jarnik M; Williamson CD; Li Y; Maio N; Golden A; Bonifacino JS Nat Commun; 2021 Nov; 12(1):6750. PubMed ID: 34799570 [TBL] [Abstract][Full Text] [Related]
13. Molecular determinants that mediate the sorting of human ATG9A from the endoplasmic reticulum. Staudt C; Gilis F; Boonen M; Jadot M Biochim Biophys Acta; 2016 Sep; 1863(9):2299-310. PubMed ID: 27316455 [TBL] [Abstract][Full Text] [Related]
14. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Claude-Taupin A; Jia J; Bhujabal Z; Garfa-Traoré M; Kumar S; da Silva GPD; Javed R; Gu Y; Allers L; Peters R; Wang F; da Costa LJ; Pallikkuth S; Lidke KA; Mauthe M; Verlhac P; Uchiyama Y; Salemi M; Phinney B; Tooze SA; Mari MC; Johansen T; Reggiori F; Deretic V Nat Cell Biol; 2021 Aug; 23(8):846-858. PubMed ID: 34257406 [TBL] [Abstract][Full Text] [Related]
15. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Maeda S; Yamamoto H; Kinch LN; Garza CM; Takahashi S; Otomo C; Grishin NV; Forli S; Mizushima N; Otomo T Nat Struct Mol Biol; 2020 Dec; 27(12):1194-1201. PubMed ID: 33106659 [TBL] [Abstract][Full Text] [Related]
16. A conserved glycine residue in the C-terminal region of human ATG9A is required for its transport from the endoplasmic reticulum to the Golgi apparatus. Staudt C; Gilis F; Tevel V; Jadot M; Boonen M Biochem Biophys Res Commun; 2016 Oct; 479(2):404-409. PubMed ID: 27663665 [TBL] [Abstract][Full Text] [Related]
17. Tracking the transition from an ATG9A vesicle to an autophagosome. Broadbent D; Barnaba C; Schmidt JC Autophagy; 2024 Apr; 20(4):976-977. PubMed ID: 37405380 [TBL] [Abstract][Full Text] [Related]
18. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Davies AK; Itzhak DN; Edgar JR; Archuleta TL; Hirst J; Jackson LP; Robinson MS; Borner GHH Nat Commun; 2018 Sep; 9(1):3958. PubMed ID: 30262884 [TBL] [Abstract][Full Text] [Related]
19. Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Behne R; Teinert J; Wimmer M; D'Amore A; Davies AK; Scarrott JM; Eberhardt K; Brechmann B; Chen IP; Buttermore ED; Barrett L; Dwyer S; Chen T; Hirst J; Wiesener A; Segal D; Martinuzzi A; Duarte ST; Bennett JT; Bourinaris T; Houlden H; Roubertie A; Santorelli FM; Robinson M; Azzouz M; Lipton JO; Borner GHH; Sahin M; Ebrahimi-Fakhari D Hum Mol Genet; 2020 Jan; 29(2):320-334. PubMed ID: 31915823 [TBL] [Abstract][Full Text] [Related]
20. ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system. Nguyen TN; Padman BS; Zellner S; Khuu G; Uoselis L; Lam WK; Skulsuppaisarn M; Lindblom RSJ; Watts EM; Behrends C; Lazarou M Mol Cell; 2021 May; 81(9):2013-2030.e9. PubMed ID: 33773106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]