These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30918006)

  • 1. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs.
    Champer SE; Oh SY; Liu C; Wen Z; Clark AG; Messer PW; Champer J
    Sci Adv; 2020 Mar; 6(10):eaaz0525. PubMed ID: 32181354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular safeguarding of CRISPR gene drive experiments.
    Champer J; Chung J; Lee YL; Liu C; Yang E; Wen Z; Clark AG; Messer PW
    Elife; 2019 Jan; 8():. PubMed ID: 30666960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherently confinable split-drive systems in Drosophila.
    Terradas G; Buchman AB; Bennett JB; Shriner I; Marshall JM; Akbari OS; Bier E
    Nat Commun; 2021 Mar; 12(1):1480. PubMed ID: 33674604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles.
    Yang E; Metzloff M; Langmüller AM; Xu X; Clark AG; Messer PW; Champer J
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35394026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing resistance allele formation in CRISPR gene drive.
    Champer J; Liu J; Oh SY; Reeves R; Luthra A; Oakes N; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5522-5527. PubMed ID: 29735716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germline Cas9 promoters with improved performance for homing gene drive.
    Du J; Chen W; Jia X; Xu X; Yang E; Zhou R; Zhang Y; Metzloff M; Messer PW; Champer J
    Nat Commun; 2024 May; 15(1):4560. PubMed ID: 38811556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance.
    Hou S; Chen J; Feng R; Xu X; Liang N; Champer J
    J Genet Genomics; 2024 Aug; 51(8):836-843. PubMed ID: 38599514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population.
    Champer J; Yang E; Lee E; Liu J; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24377-24383. PubMed ID: 32929034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.
    Champer J; Reeves R; Oh SY; Liu C; Liu J; Clark AG; Messer PW
    PLoS Genet; 2017 Jul; 13(7):e1006796. PubMed ID: 28727785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of tethered gene drive systems for confined population modification or suppression.
    Metzloff M; Yang E; Dhole S; Clark AG; Messer PW; Champer J
    BMC Biol; 2022 May; 20(1):119. PubMed ID: 35606745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling homing suppression gene drive in haplodiploid organisms.
    Liu Y; Champer J
    Proc Biol Sci; 2022 Apr; 289(1972):20220320. PubMed ID: 35414240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered reproductively isolated species drive reversible population replacement.
    Buchman A; Shriner I; Yang T; Liu J; Antoshechkin I; Marshall JM; Perry MW; Akbari OS
    Nat Commun; 2021 Jun; 12(1):3281. PubMed ID: 34078888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine esterase of Drosophila melanogaster: a laboratory model to explore insecticide susceptibility gene drives.
    Hernandes N; Qi XM; Bhide S; Brown C; Camm BJ; Baxter SW; Robin C
    Pest Manag Sci; 2024 Jun; 80(6):2950-2964. PubMed ID: 38344908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A toxin-antidote CRISPR gene drive system for regional population modification.
    Champer J; Lee E; Yang E; Liu C; Clark AG; Messer PW
    Nat Commun; 2020 Feb; 11(1):1082. PubMed ID: 32109227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can a Population Targeted by a CRISPR-Based Homing Gene Drive Be Rescued?
    Rode NO; Courtier-Orgogozo V; Débarre F
    G3 (Bethesda); 2020 Sep; 10(9):3403-3415. PubMed ID: 32727921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small-molecule approach to restore female sterility phenotype targeted by a homing suppression gene drive in the fruit pest Drosophila suzukii.
    Ma S; Ni X; Chen S; Qiao X; Xu X; Chen W; Champer J; Huang J
    PLoS Genet; 2024 Apr; 20(4):e1011226. PubMed ID: 38578788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evading resistance to gene drives.
    Gomulkiewicz R; Thies ML; Bull JJ
    Genetics; 2021 Feb; 217(2):. PubMed ID: 33724420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.