BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30918082)

  • 1. Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status.
    Sullivan S; Kharshiing E; Laird J; Sakai T; Christie JM
    Plant Physiol; 2019 Jun; 180(2):1119-1131. PubMed ID: 30918082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana.
    Zhao X; Zhao Q; Xu C; Wang J; Zhu J; Shang B; Zhang X
    J Integr Plant Biol; 2018 Jul; 60(7):562-577. PubMed ID: 29393576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production.
    Goyal A; Karayekov E; Galvão VC; Ren H; Casal JJ; Fankhauser C
    Curr Biol; 2016 Dec; 26(24):3280-3287. PubMed ID: 27889263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3.
    Pedmale UV; Liscum E
    J Biol Chem; 2007 Jul; 282(27):19992-20001. PubMed ID: 17493935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis.
    Sun J; Qi L; Li Y; Zhai Q; Li C
    Plant Cell; 2013 Jun; 25(6):2102-14. PubMed ID: 23757399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis ROOT PHOTOTROPISM2 Contributes to the Adaptation to High-Intensity Light in Phototropic Responses.
    Haga K; Tsuchida-Mayama T; Yamada M; Sakai T
    Plant Cell; 2015 Apr; 27(4):1098-112. PubMed ID: 25873385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3).
    Roberts D; Pedmale UV; Morrow J; Sachdev S; Lechner E; Tang X; Zheng N; Hannink M; Genschik P; Liscum E
    Plant Cell; 2011 Oct; 23(10):3627-40. PubMed ID: 21990941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Blue Light Enhances Phototropism by Releasing Cryptochrome1-Mediated Inhibition of
    Boccaccini A; Legris M; Krahmer J; Allenbach-Petrolati L; Goyal A; Galvan-Ampudia C; Vernoux T; Karayekov E; Casal JJ; Fankhauser C
    Plant Physiol; 2020 Aug; 183(4):1780-1793. PubMed ID: 32554507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism.
    Reuter L; Schmidt T; Manishankar P; Throm C; Keicher J; Bock A; Droste-Borel I; Oecking C
    Nat Commun; 2021 Oct; 12(1):6128. PubMed ID: 34675219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis.
    Haga K; Hayashi K; Sakai T
    Plant Physiol; 2014 Nov; 166(3):1535-45. PubMed ID: 25281709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of AGCVIII Kinases in the Hypocotyl Phototropism of Arabidopsis Seedlings.
    Haga K; Frank L; Kimura T; Schwechheimer C; Sakai T
    Plant Cell Physiol; 2018 May; 59(5):1060-1071. PubMed ID: 29490064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.
    Kami C; Allenbach L; Zourelidou M; Ljung K; Schütz F; Isono E; Watahiki MK; Yamamoto KT; Schwechheimer C; Fankhauser C
    Plant J; 2014 Feb; 77(3):393-403. PubMed ID: 24286493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The continuing arc toward phototropic enlightenment.
    Liscum E; Nittler P; Koskie K
    J Exp Bot; 2020 Mar; 71(5):1652-1658. PubMed ID: 31907539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.
    Wan Y; Jasik J; Wang L; Hao H; Volkmann D; Menzel D; Mancuso S; Baluška F; Lin J
    Plant Cell; 2012 Feb; 24(2):551-65. PubMed ID: 22374399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of NONPHOTOTROPIC HYPOCOTYL3 affects photosensory adaptation during the phototropic response.
    Kimura T; Haga K; Nomura Y; Higaki T; Nakagami H; Sakai T
    Plant Physiol; 2021 Oct; 187(2):981-995. PubMed ID: 34608954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis.
    Zhao QP; Zhu JD; Li NN; Wang XN; Zhao X; Zhang X
    J Integr Plant Biol; 2020 May; 62(5):614-630. PubMed ID: 30941890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation.
    Karayekov E; Sellaro R; Legris M; Yanovsky MJ; Casal JJ
    Plant Cell; 2013 Aug; 25(8):2892-906. PubMed ID: 23933882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.
    Stone BB; Stowe-Evans EL; Harper RM; Celaya RB; Ljung K; Sandberg G; Liscum E
    Mol Plant; 2008 Jan; 1(1):129-44. PubMed ID: 20031920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1.
    Li Y; Jing Y; Li J; Xu G; Lin R
    Plant Physiol; 2014 Apr; 164(4):2068-80. PubMed ID: 24569844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.