BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30918124)

  • 1.
    Westhoff M; Eldstrom J; Murray CI; Thompson E; Fedida D
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7879-7888. PubMed ID: 30918124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating sequential and allosteric activation models in IKs channels with mutated voltage sensors.
    Fedida D; Sastre D; Dou Y; Westhoff M; Eldstrom J
    J Gen Physiol; 2024 Mar; 156(3):. PubMed ID: 38294435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes.
    Wang Y; Eldstrom J; Fedida D
    Front Physiol; 2020; 11():504. PubMed ID: 32581825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels.
    Rocheleau JM; Kobertz WR
    J Gen Physiol; 2008 Jan; 131(1):59-68. PubMed ID: 18079560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate.
    Osteen JD; Gonzalez C; Sampson KJ; Iyer V; Rebolledo S; Larsson HP; Kass RS
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22710-5. PubMed ID: 21149716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCNQ1 channels do not undergo concerted but sequential gating transitions in both the absence and the presence of KCNE1 protein.
    Meisel E; Dvir M; Haitin Y; Giladi M; Peretz A; Attali B
    J Biol Chem; 2012 Oct; 287(41):34212-24. PubMed ID: 22908235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IKs channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits.
    Ruscic KJ; Miceli F; Villalba-Galea CA; Dai H; Mishina Y; Bezanilla F; Goldstein SA
    Proc Natl Acad Sci U S A; 2013 Feb; 110(7):E559-66. PubMed ID: 23359697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
    Barro-Soria R; Ramentol R; Liin SI; Perez ME; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7367-E7376. PubMed ID: 28808020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
    Choi SH; Shin TJ; Lee BH; Chu DH; Choe H; Pyo MK; Hwang SH; Kim BR; Lee SM; Lee JH; Kim DH; Kim HC; Rhim HW; Nah SY
    Eur J Pharmacol; 2010 Jul; 637(1-3):138-47. PubMed ID: 20399767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels.
    Osteen JD; Barro-Soria R; Robey S; Sampson KJ; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7103-8. PubMed ID: 22509038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-dependent regulation of
    Thompson E; Eldstrom J; Westhoff M; McAfee D; Balse E; Fedida D
    J Gen Physiol; 2017 Aug; 149(8):781-798. PubMed ID: 28687606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an LQT5-related mutation in KCNE1, Y81C: implications for a role of KCNE1 cytoplasmic domain in IKs channel function.
    Wu DM; Lai LP; Zhang M; Wang HL; Jiang M; Liu XS; Tseng GN
    Heart Rhythm; 2006 Sep; 3(9):1031-40. PubMed ID: 16945797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4.
    Murray CI; Westhoff M; Eldstrom J; Thompson E; Emes R; Fedida D
    Elife; 2016 Jan; 5():. PubMed ID: 26802629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs).
    Agsten M; Hessler S; Lehnert S; Volk T; Rittger A; Hartmann S; Raab C; Kim DY; Groemer TW; Schwake M; Alzheimer C; Huth T
    J Mol Cell Cardiol; 2015 Dec; 89(Pt B):335-48. PubMed ID: 26454161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEA(+)-sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled I(Ks) channels.
    Kurokawa J; Motoike HK; Kass RS
    J Gen Physiol; 2001 Jan; 117(1):43-52. PubMed ID: 11134230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ML277 regulates KCNQ1 single-channel amplitudes and kinetics, modified by voltage sensor state.
    Eldstrom J; McAfee DA; Dou Y; Wang Y; Fedida D
    J Gen Physiol; 2021 Dec; 153(12):. PubMed ID: 34636894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two small-molecule activators share similar effector sites in the KCNQ1 channel pore but have distinct effects on voltage sensor movements.
    Chen L; Peng G; Comollo TW; Zou X; Sampson KJ; Larsson HP; Kass RS
    Front Physiol; 2022; 13():903050. PubMed ID: 35957984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-Cross-Linking of I
    Westhoff M; Murray CI; Eldstrom J; Fedida D
    Biophys J; 2017 Jul; 113(2):415-425. PubMed ID: 28746852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification.
    Peretz A; Schottelndreier H; Aharon-Shamgar LB; Attali B
    J Physiol; 2002 Dec; 545(3):751-66. PubMed ID: 12482884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCNE1 reverses the response of the human K+ channel KCNQ1 to cytosolic pH changes and alters its pharmacology and sensitivity to temperature.
    Unsöld B; Kerst G; Brousos H; Hübner M; Schreiber R; Nitschke R; Greger R; Bleich M
    Pflugers Arch; 2000 Dec; 441(2-3):368-78. PubMed ID: 11211125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.