These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30918276)

  • 21. Comparing Social media and Google to detect and predict severe epidemics.
    Samaras L; García-Barriocanal E; Sicilia MA
    Sci Rep; 2020 Mar; 10(1):4747. PubMed ID: 32179780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subregional Nowcasts of Seasonal Influenza Using Search Trends.
    Kandula S; Hsu D; Shaman J
    J Med Internet Res; 2017 Nov; 19(11):e370. PubMed ID: 29109069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. COVID-19 hospitalizations forecasts using internet search data.
    Wang T; Ma S; Baek S; Yang S
    Sci Rep; 2022 Jun; 12(1):9661. PubMed ID: 35690619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leveraging hospital big data to monitor flu epidemics.
    Bouzillé G; Poirier C; Campillo-Gimenez B; Aubert ML; Chabot M; Chazard E; Lavenu A; Cuggia M
    Comput Methods Programs Biomed; 2018 Feb; 154():153-160. PubMed ID: 29249339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influenza forecasting for French regions combining EHR, web and climatic data sources with a machine learning ensemble approach.
    Poirier C; Hswen Y; Bouzillé G; Cuggia M; Lavenu A; Brownstein JS; Brewer T; Santillana M
    PLoS One; 2021; 16(5):e0250890. PubMed ID: 34010293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal multi-source forecasting of seasonal influenza.
    Ertem Z; Raymond D; Meyers LA
    PLoS Comput Biol; 2018 Sep; 14(9):e1006236. PubMed ID: 30180212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forecasting influenza epidemics by integrating internet search queries and traditional surveillance data with the support vector machine regression model in Liaoning, from 2011 to 2015.
    Liang F; Guan P; Wu W; Huang D
    PeerJ; 2018; 6():e5134. PubMed ID: 29967755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using Google Trends and ambient temperature to predict seasonal influenza outbreaks.
    Zhang Y; Bambrick H; Mengersen K; Tong S; Hu W
    Environ Int; 2018 Aug; 117():284-291. PubMed ID: 29778013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. When Google got flu wrong.
    Butler D
    Nature; 2013 Feb; 494(7436):155-6. PubMed ID: 23407515
    [No Abstract]   [Full Text] [Related]  

  • 30. A better prediction model for patient surges from influenza? New Internet-based tool shows promise, say researchers.
    ED Manag; 2012 Mar; 24(3):29-30. PubMed ID: 23687735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using clinicians' search query data to monitor influenza epidemics.
    Santillana M; Nsoesie EO; Mekaru SR; Scales D; Brownstein JS
    Clin Infect Dis; 2014 Nov; 59(10):1446-50. PubMed ID: 25115873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Integrated Influenza Surveillance Framework Based on National Influenza-Like Illness Incidence and Multiple Hospital Electronic Medical Records for Early Prediction of Influenza Epidemics: Design and Evaluation.
    Yang CY; Chen RJ; Chou WL; Lee YJ; Lo YS
    J Med Internet Res; 2019 Feb; 21(2):e12341. PubMed ID: 30707099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Spatial-Temporal Method to Detect Global Influenza Epidemics Using Heterogeneous Data Collected from the Internet.
    Zhou X; Yang F; Feng Y; Li Q; Tang F; Hu S; Lin Z; Zhang L
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):802-812. PubMed ID: 28391203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing COVID-19 Epidemic Forecasting Accuracy by Combining Real-time and Historical Data From Multiple Internet-Based Sources: Analysis of Social Media Data, Online News Articles, and Search Queries.
    Li J; Huang W; Sia CL; Chen Z; Wu T; Wang Q
    JMIR Public Health Surveill; 2022 Jun; 8(6):e35266. PubMed ID: 35507921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of environmental factors on Internet searches related to sinusitis.
    Willson TJ; Lospinoso J; Weitzel EK; McMains KC
    Laryngoscope; 2015 Nov; 125(11):2447-50. PubMed ID: 26108699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska.
    Araz OM; Bentley D; Muelleman RL
    Am J Emerg Med; 2014 Sep; 32(9):1016-23. PubMed ID: 25037278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing provider recruitment for influenza surveillance networks.
    Scarpino SV; Dimitrov NB; Meyers LA
    PLoS Comput Biol; 2012; 8(4):e1002472. PubMed ID: 22511860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Web and social media for influenza surveillance.
    Corley CD; Cook DJ; Mikler AR; Singh KP
    Adv Exp Med Biol; 2010; 680():559-64. PubMed ID: 20865540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional Level Influenza Study with Geo-Tagged Twitter Data.
    Wang F; Wang H; Xu K; Raymond R; Chon J; Fuller S; Debruyn A
    J Med Syst; 2016 Aug; 40(8):189. PubMed ID: 27372953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.